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ABSTRACT 

Convolutional Neural Network (CNN), a popular machine learning algorithm, has 

been proven as a highly accurate and effective algorithm that has been used in a variety of 

applications such as handwriting digit recognition, visual recognition, and image classifi-

cation. State-of-the-art CNNs are computationally intensive, yet their parallel and modular 

nature make platforms like Field Programmable Gate Arrays (FPGAs) well suited for the 

acceleration process. Typically, Convolutional Neural Networks take a very long develop-

ment round to be implemented or accelerated using FPGAs, hence in this thesis, we pro-

pose a VHDL generation tool (VGT), which through VHDL code (CNN architecture) can 

be on the fly generated for different CNN models (benchmarked and hand-tuned). The 

generated code or architecture is highly optimized, where it is modular, highly parallel, 

reconfigurable, scalable, fully pipelined, and adaptive to different CNN models. We 

demonstrate the automatic VHDL generation tool and its adaptability by implementing a 

small-scale CNN model “LeNet-5” and a large-scale one “AlexNet”. The generated code 

for the small-scale model does not incorporate any external memory management for the 

CNN parameters, whereas parameters are automatically hard-coded as constants unlike 

how it is typically done for large-scale models. On a Xilinx Virtex-7 running at 200 MHZ, 

the system is capable of processing up to 125k 28×28 Images per second for LeNet-5 and 

achieved a peak performance of 611.52 GOP/s for AlexNet. 
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CHAPTER 1.    INTRODUCTION 

Convolutional Neural Networks (CNNs), a type of neural networks and a prominent 

machine learning algorithm, inspired by the visual cortex of the brain and a mathematical op-

eration called convolution, currently represent the most viable approach to image understand 

ing. Indeed, CNNs have gained popularity not only in image and video classification 

[1][2][3][4], but also in many other applications such as speech recognition [5][6], textual anal-

ysis [1][2], and visual object recognition and self-driving cars [7].  

The idea of neural networks has been around since the 20s of the 19th century, yet the 

latest generations of high-performance computing platforms have allowed the evolution of 

CNNs. In the past couple of years, many CNN models such as LeNet-5, AlexNet, VGG, Goog-

leNet, and ResNet were presented. For example, AlexNet model [8] won ImageNet Large-

Scale Vision Recognition Challenge (ILS VRC) 2012, achieving a top-5 accuracy of 84.7%. 

The exceptional performance of convolutional neural networks comes as a trade off to the 

enormous computational cost they require, where a large CNN model requires over billion 

operations per image. With the availability of powerful platforms like graphic processing units 

(GPUs), this level of performance can be reached, yet due to the high-power consumption of 

GPUs it is infeasible to embed such solutions into small portable systems. Different platforms 

have been considered for efficient implementations of CNNs, and FPGAs were investigated as 

the most promising one [9]. Interestingly, FPGAs seem to well-fit the job because they are 

reconfigurable, take advantage of the inherent parallelism in CNNs, and power efficient.   
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CNNs are known for their frequent data access, computation complexity, and very long 

development round on FPGAs, hence an efficient implementation is required. In this thesis, 

we present a VHDL generation tool that reduces time and effort in the process of implementing 

CNNs on FPGAs. The tool allows users to easily configure a CNN model through a graphical 

user-interface and generate a highly optimized VHDL code for it. The generated VHDL re-

flects a modular, highly parallel, scalable, reconfigurable, and fully-pipelined implementation 

of the target CNN model. The key contributions of this work are listed as follows: 

• A paper entitled “VHDL generator for a high performance Convolutional neural network 

FPGA-based accelerator” is published out of this work. 

• A VHDL generation tool that offers a highly optimized auto-generated implementation of 

CNN models on FPGAs with the following features: 

✓ Support for configuration through a GUI and/or external configuration file.  

✓ Support for different CNN models in extremely short development round. 

✓ The tool is optimized to ensure flexibility, and adaptability with CNN models. 

✓  Support for test-bench for validation and testing purposes 

• A High-performance FPGA-based accelerator that is highly parallel, scalable, reconfigura-

ble, and operates in a fully-pipelined style.  

• The VHDL generation tool was tested on two benchmarked models (LeNet-5 and AlexNet) 

and other hand-tuned models. The system can process up to 125K Images/s for LeNet-5 

and achieved peak performance of 611.52 GOP/s for the AlexNet model 

• An executable of the VHDL generator is made available at: 

HTTPS://GITHUB.COM/MHAMDAN91/CNN_VHDL_GENERATOR  

https://github.com/MHAMDAN91/CNN_VHDL_GENERATOR
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The rest of this thesis is organized as follows, CHAPTER 2.    introduces general con-

cepts about machine learning and neural networks. In CHAPTER 3.   , a thorough background 

about Convolutional Neural Networks and their topologies is presented, and a brief introduc-

tion to FPGAs is given. CHAPTER 4.    describes accelerators design and CNNs implementa-

tion. In CHAPTER 5.   , we present the main contribution of this work, the VHDL generation 

tool. CHAPTER 6.    presents CNN accelerators from previous work as well as related work 

to HDL code generation for CNNs. CHAPTER 7.    illustrates hardware architecture and im-

plementation details. CHAPTER 8.    shows the evaluation of this work and obtained results. 

Finally, conclusion and future work are presented in CHAPTER 9.     
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CHAPTER 2.    BACKGROUND 

This chapter introduces a brief background about machine learning and its types of 

learning, then covers some concepts about artificial neural networks 

Brief Introduction to Machine learning 

Machine Learning is an artificial intelligence approach, by which machines “Comput-

ers” learn in a similar way to how humans learn. Machine learning addresses how program 

systems can automatically learn and improve with experience. Learning in this context is not 

learning by heart but recognizing complex patterns and make intelligent decisions based on 

data. The difficulty lies in the fact that the set of all possible decisions given all possible inputs 

is too complex to describe. To tackle this problem the field of machine learning develops al-

gorithms that discover knowledge from specific data and experience, based on sound statistical 

and computational principles.  

The field of machine learning integrates many distinct approaches such as probability 

theory, logic, combinatorial optimization, search, statistics, reinforcement learning, and con-

trol theory. The developed methods are at the basis of many applications, ranging from vision 

to language processing, forecasting, pattern recognition, games, data mining, expert systems, 

and robotics [10]. Machine learning is usually divided into two main types: predictive (unsu-

pervised) or supervised learning [11]. There is a third type of machine learning that is not 

widely used known as reinforcement learning. The latter type is useful for learning how to act 

when given occasional reward or punishment signals. 
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Supervised learning 

In supervised training, inputs and outputs are provided, where inputs are processed by 

the network, and its resulting outputs are compared against desired outputs. Errors are then 

propagated back through the system causing the system to adjust weights that control the net-

work. This process occurs over and over as the weights are continually tweaked to minimize 

the error. The dataset that enable training is called training set. During the training of a network 

the same set of data is processed many times as the connection weights are ever refined.  

Unsupervised learning  

In unsupervised training, the network is provided with inputs but not with desired out-

puts. The system itself must then decide what features it will use to group the input data. This 

is often referred to as adaptation. Unsupervised learning is usually used for clustering purposes. 

Neural Networks 

The development of neural networks dates back to the early 19th century. ANNs models 

are inspired by biological neural networks based on the functionality of neurons. Usually, neu-

ral networks consist of many artificial neurons that are interconnected with each other. The 

neurons are arranged in such a way to form a feed-forward neural network. Neurons are the 

basic building block of a neural network, where a neuron receives a number of input signals 𝑥𝑖 

from other neurons and these input signals are multiplied with weights 𝑊𝑖 to simulate the syn-

aptic interaction at the dendrites. The weighted inputs are summed up, biased with a value 

typically equals 1, and fed into a non-linear activation function that produces the neuron’s 

output signal.  

𝑂𝑈𝑇𝑛𝑒𝑢𝑟𝑜𝑛
𝑖 = ∑ 𝐼𝑁𝑃𝑈𝑇𝑖  × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 

𝐾𝑖𝑛𝑝𝑢𝑡

𝑗=1
𝐵𝑖𝑎𝑠𝑖 ( 2.1) 
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Why neural networks and not regular computer programming? The idea behind neural 

networks is that they do not require an explicit description of a problem neither need to be 

programmed to perform a particular task. The neural network adapts itself during a training 

phase, based on examples of similar problems. When a network has completed its training 

phase, the network is able to relate the problem data to the solutions, inputs to outputs, and 

able to offer a feasible solution to a new problem.  

Before a neural network is deployed, the network must be trained on a particular set of 

examples, where parameters (weights and biases) in the neural network are not manually cho-

sen, but learned during this training phase. As mentioned in supervised learning, a network is 

provided with a set of labeled training examples. The training starts with small and randomly 

initialized weights. Inputs are multiplied with weights and fed to a non-linearity function that 

produce the output to be compared with the labeled examples using a loss function that 

measures the difference between the true output (labeled examples) and the output of the non-

linearity function. Error is minimized by optimizing the values of weights. Using the Back-

propagation Algorithm [4] , outputs are propagated all the way back in the network. This is 

typically solved via Stochastic Gradient Descent (SGD) [12].  

Stochastic gradient descent algorithm is perhaps the most commonly used optimization 

procedure for training deep neural networks [13], in which the network weights are moved 

along the negative of the gradient of the performance function. The term backpropagation re-

fers to the manner in which the gradient is computed for nonlinear multilayer networks. The 

algorithm propagates the error, that is computed as the difference between the output of the 

forward pass and the expect output, back throughout the network to adjust the weights values 

in order to minimize the error.  
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CHAPTER 3.    CONVOLUTIONAL NEURAL NETWORKS AND FPGAs 

This chapter sheds the light on Convolutional Neural Networks, their structure and to-

pologies. Further, the design and training of CNNs are illustrated, and a concise introduction 

to field programmable gate arrays (FPGAs) is provided. 

Convolutional Neural Networks 

Convolutional Neural Networks are a class of feed-forward neural networks that are 

suited for operations on 2-dimensional data such as images. CNNs are similar to ordinary neu-

ral networks, where they are made up of neurons that have weights and biases. Neurons in 

CNNs receive inputs, perform a dot product that is followed by a non-linearity, and then applies 

loss function on the classification layer. The major difference between CNNs and regular feed-

forward NNs is that CNNs deal better with 2D input data and that is why they are mainly used 

in image classification.  

CNNs usually start with a convolutional layer, where it takes input images and decom-

pose them into different feature maps such as edges, lines, curves, etc. Multiple processes are 

applied to the extracted feature maps throughout the entire network. Extracted feature maps 

from the last layer (typically, a fully connected layer) are classified into output classes using a 

classifier like SoftMax classifier [14]. A typical Convolutional Neural Network consists of a 

number of convolutional and fully connected layers, where most of the operations are per-

formed; pooling layers that are used to avoid overfitting; a classification layer, to classify final 

results into classes; and other as-needed layers. A layer in the CNN consists of 3D volumes of 

neurons as shown in Figure 3.1 (width, height, and depth and the word depth refer to what is 

called “Feature-maps or activation-maps” not the number of layers in the CNN).  
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Figure 3.1 Left: A 3-layer feed-forward Neural Network. Right: A CNN layer that arranges 

its neurons in three dimensions (width, height, depth). The 3D input volume is transformed 

into a 3D output volume of neuron activations in every layer [15]. 

Convolutional Layer 

The convolutional layer is considered as the main building block of a CNN, and it 

comprises most of operations in a CNN model. The convolutional layer essentially performs a 

mathematical operation called convolution that involves 3-dimensional multiply accumulate 

(MACC) operations. Shown in Figure 3.2, a kernel/Filter (Filter values selection depends on 

intended features, and input images should be divisible by 2 many times) of weights that is 

multiplied by a set of inputs (receptive region), and the weighted inputs are summed together.  

 

Figure 3.2 Right: A mathematical representation of the convolution operation followed by a 

nonlinearity function. Left: Input value of size 7×7×1 with padding of 1, a stride of 2, and 

receptive field of 3×3 is convolved with a filter (In Red) of size 3 [15] 

A bias whose value usually one is added to the summed weighted inputs to ensure that neurons 

fire. An activation function such as rectified linear unit (ReLU) is applied to the accumulated 

sum to introduce nonlinearity and limit the output to a reasonable range. Results from the ac-

tivation function are traversed to corresponding neurons in the next layer.  
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The computation of the spatial size of the output is shown in Equation 3.1 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =
(𝐼𝑛𝑝𝑢𝑡𝑤𝑖𝑑𝑡ℎ−𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒+2× 𝑃𝑎𝑑𝑑𝑖𝑛𝑔)

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1  ( 3.1) 

Three hyperparameters control the size of the output: Depth, Stride, Zero-padding, 

where the stride is the slide rate at which the filter slides (most common slide value is 1, where 

the filter is moved one pixel to the right at a time), and zero-padding is a process that is applied 

to the border of the input to help control the spatial size of the output and preserve the infor-

mation on the boarder. 

In CNNs the total number of parameters (weights and biases) is less than regular feed-

forward networks, whereas not all neurons are connected to each other. The overall number of 

parameters is reduced because local field receptors (local connectivity) is applied, where neu-

rons only connect to respective local field without the need to connect to all inputs (pixels in 

an image or neurons in a feature map). The field receptor is shared among all neurons in the 

next layer. For example, if there is N hidden layers and 5×5×3 receptor field, then the total 

number of parameters equals  (5×5×3×N) + (N biases). Figure 3.3 shows an input image 

convolved with a filter (in green), producing a corresponding activation maps (in blue). The 

other activation map (in green) is similarly was produced by a different filter with the same 

size, but different filter values 

 

Figure 3.3 Convolution of a 5×5×3 filter with 32×32×3 input image [15]  
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Non-linearity (Activation Function)  

Activation function is applied to each input pixel to ensure nonlinearity in the network 

as well as to get rid of unnecessary information. Among the various activation functions, Sig-

moid, Tanh, and ReLU are the most commonly used activation functions. Sigmoid = 
1

(1 + 𝑒−𝑥) 
 , 

and Tanh = tanh(x) activation functions require a longer training time in CNNs [16], unlike 

ReLU activation function which converges faster during training. Further, ReLU is simply 

defined as a zero-thresholding operation  ReLU = max (0, x). Figure 3.4 shows the different 

types of activation functions. 

 

Figure 3.4 Activation Functions: ReLU, Tanh, Sigmoid 

Normalization layer 

Normalization or Local Response Normalization (LRN) implements the lateral inhibi-

tion [16] by damping the responses that are uniformly large in any given local neighborhood. 

Before sending the weighted inputs (outputs) of convolution to the nonlinearity, normalization 

layer normalizes the outputs depending on the neighboring neurons to help bring inputs to 

ReLU to a common scale. LRN layer was introduced in the AlexNet architecture [8], but are 

less common in recent CNNs.   
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Pooling layer 

The importance of pooling layers comes to the fact that they prevent CNNs from over-

fitting [17]. Basically, spatial pooling is a form of nonlinear subsampling that is utilized to 

reduce the feature dimensions as we go deeper in the network. There are multiple methods to 

perform pooling and the most common ones are average and maximum pooling. In max pool-

ing a set of neurons are subsampled based on the size of a pooling filter, whereas the maximum 

neuron value in that filter is passed to the corresponding neuron in the next layer and the rest 

of neurons are dropped out. In average pooling the forwarded value to the corresponding neu-

ron in the next layer is the average of all neurons in the used filter as shown in Figure 3.5. 

 
Figure 3.5 Average and maximum pooling output for 2 x 2 filter with stride of two [15] 

Fully-Connected layer 

The fully connected (FC) layer usually comes before classification layer and it com-

prises the highest number of parameters because every neuron in this layer is connected to all 

neurons in the previous layer, and parameters are translated on the connections between those 

neurons. Inputs in this layer are multiplied with corresponding weights, biases added respec-

tively, and nonlinearity is applied similarly like convolutional layers.   
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Other Layers 

Dropout layer: A method used to avoid overfitting in large CNNs. During training, this layer 

randomly drops a selectable percentage of its connections in order to prevent the network from 

learning very precise mappings, and force some redundancy to be built into the learned weights. 

 

Figure 3.6 Dropout representation 

Classification layer: This is last layer in a CNN and its main functionality is to classify the 

final output from the preceding layer into specific classes. In this layer a classification function 

such as SoftMax is used to perform the classification process. Basically, the SoftMax classifier 

converts raw class scores 𝑧𝑖 of the nonlinearity in the preceding layer to a probability 𝑃𝑖 in the 

range (0, 1) according to 𝑃𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑘
, to help bring the results to a common scale. The top 

probabilities from SoftMax classifier are then compared with actual labels of the available 

classes, hence evaluate the accuracy of the model. 

CNN Topologies  

Over the past couple of years many CNN topologies were introduced for their accuracy 

and performance. Image classification is an interesting and considerably the hardest task in 

computer vision, where the solver has to either label images, identify objects in images, or 
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group images of the same characteristics in similar groups. This task seems to be solved effi-

ciently using Convolutional Neural Networks.  

An image classification competition called the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) is held annually, where participants compete with their developed 

CNN algorithms to classify images from ImageNet database. The ImageNet database consists 

of more than 14 million images, where each labeled with a corresponding class. The training 

set of ILSVRC comprises about 1.2 million images under 1000 different classes. Table I shows 

a summary for some of CNN algorithms that participated in ImageNet Challenge.   

Table I List of different CNN topologies that participated in the ImageNet challenge 

 

 

 

 

 

 

 

LNet-5-5 

Among the early CNN models LeNet-5 was proposed by Yann LeCun et al [18] in 

1998 to perform digit recognition on images contained digits. The model contained only two 

convolutional layers and two pooling ones along with two full connected layers. We demon-

strated out VHDL generation tool by implementing this model. 

AlexNet 

AlexNet model is the winner of the ILSVRC challenge in 2012 and it was developed 

by Alex Krizhevsky et al [8]. The architecture comprises a total of 5 convolutional layer with 

three pooling layers and two full connected layers. AlexNet has about 60 million parameters 

and performs approximately 1.1 billion MACC operations for one forward pass. The SoftMax 

 Convolution 

layers 

Parameters 

[millions] 

Activations 

[millions] 

ImageNet 

Top-5 error 

AlexNet 5 60 2.4 15.4% 

VGG-Net 16 138 29 11.2% 

GoogLeNet-5 22 5 10.4 6.7% 

ResNet-2015 50 25 46.9 3.6% 
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classifier and dropout technique are adopted in this network, and the LRN layer was proposed 

in this architecture as well. This model achieved a top-5 error rate of 15.4%.  

Network-in-Network(NIN) 

Developed by Min Lin et al. [19] in 2013, NIN architecture consists of small multilayer 

perceptron working as convolutional filters, that slid over the respective input. In this network 

average pooling is adopted in the classifier instead of the fully-connected layers, hence the 

network has a smaller number of parameters. This model can be trained on ImageNet dataset 

and can reach the level of Alex-Net accuracy [20]. 

VGG-Net 

The Visual geometry group (VGG) model designed by Karen Simonyan and Andrew 

Zisserman [21] was the winner of the ImageNet challenge in 2014. The deepest proposed 

model contained 19 convolutional layers, that is about 4x deep as AlexNet. Convolutional lay-

ers exclusively used 3 × 3 convolution filters and 2 × 2 max-pooling ones. This network has a 

very high number of parameters of about 138 million and a single forward pass requires ap-

proximately 16 billion MACC operations. 

GoogLeNet-5 

As the trend about CNN models was to develop deeper networks, Christian Szegedy et 

al [22] proposed a 22-layer deep CNN model called GoogLeNet-5, which won ImageNet chal-

lenge in 2015 with a top-5 error rate of 6.7%. The model has only 1.2 million parameters that 

is about 0.86% of VGG parameters. The massive reduction of parameters resulted into more 

complex architecture that employs what so-called Inception modules. An inception module is 

basically a network-in-network sub architecture that uses a 1 × 1 convolutional layer to reduce 

the number of input channels.  
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ResNet 

Proposed by kaiming He et al [23] from Microsoft research, the residual network (Res-

Net) with a depth of 152 won the ImageNet challenge by achieving a top-5 error rate of 3.6%. 

Speaking of 152 layers means a hard training problem. To get over this problem, researchers 

included detours around each batch of subsequent convolutional layers. This topology can be 

viewed as 𝑦 = 𝐹(𝑥) + 𝑥 where the network has to learn a residual function F(x) only. 

Introduction to Field Programmable Gate Arrays  

This section gives a brief introduction to Field-Programmable Gate Arrays (FPGAs), 

then highlights characteristics, strengths, and weaknesses of FPGAs in comparison with other 

hardware platforms such as central processing units (CPUs), graphics processing units (GPUs), 

and application specific integrated circuits (ASICs). 

Field-Programmable Gate Arrays 

Field Programmable Gate Arrays are prefabricated semiconductor devices that consist 

of 2D arrays of configurable logic blocks (CLBs, or logic slices), which are connected via 

programmable logic. Interconnect resembles a network of wire bundles that run horizontally 

and vertically between the logic blocks with switchboxes (switches matrices) at each intersec-

tion between the horizontal and vertical bundles. The logic blocks, the fixed-function units as 

well as the interconnect are programmed electronically by writing a configuration bitstream 

into the device to implement any digital design. The configuration is typically held in SRAM 

memory cells and the FPGAs can be reprogrammed many times [24].  

The first static memory-based (SRAM) FPGA was proposed by Wahlstrom in 1967. 

This architecture allowed for both logic and interconnection configuration using a stream of 

configuration bits. The first commercial modern-era FPGA was introduced by Xilinx in 1984. 

It contained arrays of configurable logic blocks and inputs/outputs (I/Os). Modern high-end 
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FPGA generations feature hundreds of thousands of configurable logic-blocks, and they in-

clude an abundance of hardened functional units that enable fast and efficient implementations 

of common functions.  

 

Figure 3.7 Internal Architecture of FPGA [25] 

• Programmable Logic 

Programmable logic blocks in FPGA are used to provide the basic computation and 

storage elements used in digital systems. A typical basic logic element contains some form of 

programmable combinational logic, a flip-flop or latch, and some fast carry logic in order to 

reduce area and delay cost. Additionally, modern FPGAs contain a heterogeneous mixture of 

different blocks some of which can be used for specific functions such as dedicated memory 

blocks, multipliers (DPS blocks), or multiplexers [25]. 

• Programmable Interconnect  

Connections between logic blocks and I/O blocks are provided through programmable 

routing in FPGA. The interconnect consists of pass transistors, tri-state buffers, and multiplex-

ers that achieve the desired connection. Generally, multiplexers and pass transistors are used 

within a logic cluster to connect the logic elements together while all three are used for more 

global routing structures. There are several global routing structures that have been used in 

FPGAs such as island-style, cellular, bus-based, and registered architectures. 
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• Programmable I/O  

Logic blocks and routing architectures are interfaced with external components of an 

FPGA through Input/output pads or programmable I/O. The I/O pad and supporting surround-

ing logic circuitry form important components that are called I/O cells. Due to variation in 

supply voltage and reference voltage standards, the design of I/O programmable blocks is kind 

of challenging. The choice of supported standard is one of the most important decisions in I/O 

architecture design. Supporting large number of standards can increase the silicon area re-

quired for I/O cells significantly [25].  

• Specialized programmable functional blocks 

FPGA architecture has been developed over the course of time through adding more 

specialized programmable functional blocks such as embedded memory (Block RAMs), arith-

metic logic (ALUs), multipliers (MUXs), digital signal processors (DSP48), and embedded 

microprocessors. This made FPGAs heterogeneous platforms.  

FPGAs Versus Other Hardware Platforms  

• FPGAs versus General-Purpose Processors 

 The advantage of FPGA-based systems over traditional processing units-based sys-

tems such as desktop computers, smartphones, and GPUs, is the availability of freely program-

mable general-purpose logic blocks. FPGAs can be arranged into high performance specialized 

accelerators for very specific tasks, resulting in improved processing speed, higher throughput. 

Compared to GPUs, FPGAs are considered to be a much power-efficient devices where they 

fit better for mobile device-based applications. These advantages come at the price of increased 

complexity and reduced agility during development time, where designers need to carefully 

take into consideration the available hardware resources and the efficient mapping of target 
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algorithms onto the FPGA architecture. Further, FPGAs exceed the computing power of digital 

signal processors (DSPs) by breaking the paradigm of sequential execution and accomplishing 

more per clock cycle where they take full advantage of hardware parallelism. Controlling in-

puts and outputs (I/O) at the hardware level provides faster response time and specialized func-

tionality to closely match application requirements. FPGAs usually do not use operating sys-

tems that actually minimize reliability concerns with true parallel execution and deterministic 

hardware that is dedicated to every task [26]. 

• FPGAs versus ASICs 

Application-Specific Integrated Circuits (ASICs) are custom-tailored semiconductor 

devices. Unlike FPGAs, ASICs do not have any area or timing overhead that could be caused 

by configuration logic and generic interconnects, thus resulting in the fastest, most energy-

efficient, and smallest systems. However, the sophisticated fabrication processes for ASICs 

results in a very lengthy and complicated development round and very high nonrecurring en-

gineering upfront costs that demand a first-time-right design methodology and very extensive 

design verification. Therefore, ASICs are mostly suited for very high-volume, cost-sensitive 

applications where the non-recurring engineering and fabrication costs can be shared between 

a large number of devices. FPGAs with their reprogrammability are better suited for prototyp-

ing and short development cycles, where concepts can be tested and verified in hardware with-

out going through the long fabrication process of custom ASIC design. FPGA chips are field-

upgradable and do not require the time and expense involved with ASIC redesign. Digital 

communication protocols, for example, have specifications that can change over time, and 

ASIC-based interfaces may cause maintenance and forward-compatibility challenges. Being 

reconfigurable, FPGAs can keep up with future modifications that might be necessary [25][27].  
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CHAPTER 4.    ACCELERATOR DESIGN AND CNN IMPLEMENTATION 

Convolutional Neural Networks go through multiple phases before they get imple-

mented in hardware to perform particular tasks for a particular application. In the previous 

section we illustrated various CNN topologies, where all of them are essentially based on the 

same design concepts of a typical CNN structure. The variations between the aforementioned 

topologies are driven by parameters that control the behavior of the network. This chapter will 

introduce CNN training, optimization, and Implementation. 

CNN Training 

For a Convolutional Neural Network to perform image classification of a particular 

dataset, the network has to be trained to perform classification for that dataset. CNNs are typ-

ically trained using backpropagation algorithm [4]. This is usually solved via Stochastic Gra-

dient Descent (SGD) [12]. SGD is perhaps the most commonly used optimization procedure 

for training deep neural networks [13], in which the network weights are moved along the 

negative of the gradient of the performance function. The term backpropagation refers to the 

manner in which the gradient is computed for nonlinear multilayer networks. The algorithm 

propagates error, that is computed as the difference between the output of forward pass and 

expected output all the way back throughout the network to adjust weights values in order to 

minimize the error. Usually, CNN models are developed using libraries provided by well-

known frameworks such as TensorFlow, Keras, or Caffe. Training is mostly done using GPUs 

as it is relatively easy to implement CNNs on a GPU, yet GPUs provide a very high training 

speed although a large CNN such as AlexNet [8] could take up to a week to be trained. 

For a quick and easy start with CNN training, TensorFlow [28] is recommended to 

perform the training process, where a thorough guide on how to develop and train CNNs can 
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be found on TensorFlow website. TensorFlow offers different libraries for CNN training on 

GPUs or CPUs. Training a CNN model is relatively straightforward, where the model can be 

written in high-level language like python and then be trained using TensorFlow libraries.  

CNN Optimization 

CNN is a naturally parallel algorithm and to take full advantage of this natural phe-

nomena, is it best to exploit the available parallelism as much as needed for the target applica-

tion. Parallelism in a CNN can be explained as follows:  

Parallelism within convolution, the convolution of a matrix 𝑛 × 𝑛 using 𝑚 × 𝑚 filter can 

be computed concurrently in parallel in one clock cycle; Parallelism within pooling, pool-

ing operation can be parallelized by subsampling all of the individual submatrices at the same 

time; Parallelism within output feature maps, extracted features maps are totally independ-

ent of each other, hence all of them can be computed in parallel. In other words, if we are 

looking at X features in an image then it is possible to run X parallel processes to extract 

those features; Parallelism within input feature maps, incoming feature maps from previ-

ous layers can be processed in parallel as they can be combined to produce one single output. 

Another optimization methodology that can be taken into consideration is limiting data 

precision. Lower precision can save a lot of hardware resources, hence an efficient reduction 

in model precision considering meeting application requirements can achieve a huge optimi-

zation. In [29] authors studied the effect of limited precision data representation and computa-

tion on neural network training. Within the context of low-precision fixed-point computations, 

they observed the rounding scheme to play a crucial role in determining the network’s behavior 

during training. Their results show that deep networks can be trained using only 16-bit fixed-

point number representation when using stochastic rounding, and incurred little to no degrada-
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tion in the classification accuracy. They also demonstrated an energy-efficient hardware accel-

erator that implements low-precision fixed-point arithmetic with stochastic rounding. Other 

works such as [30], [31], and [32] adopted even smaller precisions and gained decent results.  

CNN Implementation 

Convolutional Neural Networks can be realized using the following platforms: General 

purpose central processing units (GPCPUs), graphic processing units (GPUs), and FPGAs. 

GPCPUs are the least favored platforms to run CNNs as they underutilize CNNs. Convolu-

tional Neural Networks are naturally parallel and their end-use applications are mostly image-

processing based applications, thus having a CPU in this equation does not fit at all as CPUs 

are sequentially based processing elements that are not fit for image processing nor taking 

advantage of the inherit parallelism in CNNs. While CPUs are not good for processing CNNs, 

GPUs are the most favored platforms for training CNNs, and that is obviously because with 

CNNs, GPUs process what they were actually created for. However, GPUs are not energy 

efficient because of their high-power consumption. 

Since CPUs do not take advantage of the available parallelism in a CNN and GPUs are 

energy in-efficient devices, FPGAs manage to balance this equation. FPGAs are the type of 

reconfigurable devices that can be designed to match particular design requirements. Usually 

FPGAs are utilized as accelerators, where in the case of CNNs they seem to be an excellent fit 

as they take advantage of the inherit parallelism in the CNN with a much lower power con-

sumption than that of GPUs.  

Life cannot always be easy, and that is the case with FPGAs. To accelerate a CNN on 

FPGA, designer/researcher has to go through a very long and hectic development process using 

a hardware description language (HDL) such as VHDL or Verilog. Developing using HDL can 

result in the most optimized implementation of an accelerator; however, some designers would 
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prefer to trade off some performance in order to simplify implementation and reduce the de-

velopment time. High level synthesis tools like HLS-Vivado offer an alternative methodology 

to implement hardware accelerators, where they replace hardware description languages with 

high level languages such as C, C++ or SystemC. High level synthesis and hardware descrip-

tion language will be explained in details in a later section.  

Hardware Accelerators Design 

Hardware accelerator design is a process that is subject to the requirements of target 

application and the end-implementation platform. Typically, embedded systems have a set of 

requirements and subject to particular constrains such as timing, power, and physical size. 

Those constrains require serious optimizations to be performed on algorithms prior to hardware 

implementation. To meet design requirements under hardware constrains, target algorithm 

must be investigated very well to identify the suitability for the acceleration process, the major 

optimization components, and the appropriate hardware acceleration platform.  

Potential Hardware Platforms for Accelerators Design  

Our target platform for our target algorithm implementation is FPGA; nevertheless, in 

this subsection we are providing a complementary introduction to an early brief one we men-

tioned in 0 on potential hardware platforms for accelerator design. 

• Central Processing Units (CPUs) 

 CPUs are the most common processing elements that are found in electronic devices 

such as personal computers, smartphones, tablets, playstations, Xboxes, and even cars like 

Tesla model S. Most of these CPUs are called general-purpose CPUs, which means that they 

are designed to perform any task, where they can be easily and flexibly reprogrammed using 

software. GPCPUs offer decent performance on a wide range of computation workloads; how-

ever, CPUs are sequentially based computing devices, meaning that they underutilize parallel-
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based tasks. CPUs are not ideal for high-parallelism dependent problems such as image pro-

cessing, which is what we are doing in this work. 

• Graphic Processing Units (GPUs) 

 The name of this processing element speaks for what it actually does. GPUs are found 

in nowadays personal computers and are dedicated to graphics related processing workloads. 

Recently, GPUs were investigated as an acceleration platform for machine learning problems 

and other general computing tasks. A high-end GPU such as NVIDIA TITAN XP contains 

3840 floating-point processing cores that can run at a boost-frequency of 1.582 GHz, offering 

about 547.7 GB/s memory bandwidth with memory speed of 11.4 Gbps. TITAN XP can com-

pute up to 11 TFLOP/s, but that comes at the cost of high power consumption which peaks at 

250 W. Such very high-power consumption processor is not suitable for power constrained 

embedded devices. Further, with GPUs, software execution model is followed and structured 

around executing tasks in parallel on independent compute units. As such, the goal in devel-

oping deep learning techniques for GPUs is to adapt algorithms to follow this model, where 

computation is done in parallel and data interdependence is ensured. Hence, GPUs are not the 

optimal platform for our target algorithm.  

• Application-Specific Integrated Circuits (ASICs) 

 When it comes to meeting system requirements, ASICs are the ideal solution, where 

they can achieve the highest performance and energy efficiency. However, ASICs are less 

suitable for irregular computation and dynamic algorithms that evolve with time, since they do 

not provide any reconfiguration once fabricated. CNN algorithm is an evolving algorithm and 

there is no fixed model that is considered as a representative model. Implementing a complete 

CNN on an ASIC is neither efficient nor effective, but implementing parts of a CNN is a much 
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better option. Convolutional layers are very computationally expensive, and accelerating some 

fixed modules using ASIC technology might be efficient. An example of efficient ASIC-based 

implementation of parts of a CNN is neuromorphic integrated circuits that use analog elec-

tronic circuits to mimic neurons and neural networks on custom-designed ICs [33]. Overall, 

for a dynamically changing CNN that requires reconfiguration, a seldom ASIC implementation 

is not preferred.  

• Field-Programmable Gate Arrays (FPGAs) 

 While it is best to adapt algorithms to the parallel nature of the GPUs, FPGA architec-

ture is tailored for the application, where custom processing engines can be built using the 

programmable logic blocks to meet the algorithm needs. In other words, there is less emphasis 

on adapting algorithms when it comes to developing machine learning techniques for FPGAs. 

This allows more freedom to explore algorithm level optimizations. The performance of FPGA 

design can be further increased by utilizing fixed-point or half- point precision data formats. 

Optimizations and techniques that require many complex low-level hardware control opera-

tions cannot be easily implemented in high-level software languages, thus is it more attractive 

to consider FPGA implementation. Further, in addition to the adaptiveness of FPGA imple-

mentation, FPGAs are reconfigurable and flexible that offer a wide scope of CNN models to 

be implemented on the same chip without spending any further design costs as it is the case in 

ASICs. Thus far, FPGA is the most suitable platform for our algorithm, but the downside of 

FPGA-based implementations is that designers have to use hardware description languages to 

perform their implementation which are not very friendly to program with and require decent 

programming experience. 
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Achieving High Performance with FPGA-Based Computing 

Herbordt, Martin C., et al [34] designed 12 methods to avoid generating implementa-

tional heat while using FPGAs to accelerate high performance computing (HPC) applications. 

In this section we summarize those methods and highlight the ones that fit our application. 

• Method 1, use an algorithm optimal for FPGAs 

 Prior to accelerating an algorithm using FPGA, it is necessary to check that this algo-

rithm is worthwhile accelerating on FPGA and match the reconfigurable and parallel nature 

the FPGA can offer. Typically, the optimal algorithm for FPGA acceleration differs from that 

for serial computer when creating high performance computing FPGA applications. 

• Method 2, use a computing mode appropriate for FPGAs 

 When talking about computing mode, it is referred to the differences between compu-

tation in software and hardware. FPGA configurations might resemble high-level language 

programs, they essentially specify hardware, not software. Meaning that good computing 

modes for software are not necessarily good computing modes for hardware, whereas restruc-

turing an application can substantially improve its performance. For example, random access 

and pointer-based data structures are merely staples of serial computing, they may yield poor 

performance in FPGAs. Streaming, systolic, associative computing structures, and arrays of 

fine-grained automata are more preferable. 

• Method 3, use appropriate FPGA structures 

FPGAs support various data structures, yet certain data structures such as stacks, trees, 

and priority queues are ubiquitous in application programs, as are basic operations such as 

search, reduction, and parallel prefix. The analogous structures and operations usually differ 

from what is obtained by directly translating software structures into hardware. 
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• Method 4, living with Amdahl’s law 

 Amdahl’s law states that significant application speedup through an enhancement re-

quires most of the application to be enhanced, but this is difficult to achieve sometimes espe-

cially with existing high-performance computing code. 

• Method 5, hide latency of independent functions 

latency hiding can contribute to achieving high performance in parallel applications, 

especially the latency introduced by the overlap between computation and communication. In 

FPGA implementations, rather than allocating tasks to processors that must communicate with 

one another, latency hiding lays out functions on the same chip to operate in parallel. 

• Method 6, use rate-matching to remove bottlenecks 

 Multi-processor implementations offer some flexibility in partitioning by function or 

data, but on FPGA functions are laid out on the chip, meaning that function-level parallelism 

is already built in. This implies pipelining not only within but also across functions. Further, 

rate-matching can also be found across computational power offered in a design and the I/O 

bound on target FPGA, thus it is better to match I/O with desired parallelism to avoid perform-

ing unutilized parallelism. 

• Method 7, take advantage of FPGA-specific hardware 

FPGAs are often viewed as homogenous substrates that can be configured into arbitrary 

logic. Nowadays FPGAs include, DSP modules, on-chip memories, and other processing ele-

ments. Those processing elements can be utilized to perform specific tasks to result in an op-

timized implementation and a better utilization of FPGA resources. For example, the Xilinx 
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VP100 has 400 independently addressable, 32-bit, and quad-ported BRAMs; it achieves a sus-

tained bandwidth of 20 terabytes per second at capacity. Using this bandwidth greatly facili-

tates high performance and is an outstanding asset of current generation FPGAs. 

• Method 8, use appropriate arithmetic precision 

 We talked about this in the previous section, where it is an excellent optimization tech-

nique to consider when using FPGAs for hardware implementation. High-end microprocessors 

have 64-bit data paths, which in many applications are often overlooked as only a few bits of 

precision are needed. In contrast with microprocessors where data paths are fixed, FPGAs en-

able configuration of data paths into arbitrary sizes, allowing a tradeoff between precision and 

parallelism. An additional benefit of minimizing precision comes from shorter propagation 

delays through narrower arithmetic units. 

• Method 9, use appropriate arithmetic mode 

 Microprocessors provide support for integers and floating point depending on multi-

media features; however, in DSP systems cost concerns often require DSPs to have only inte-

gers. Although software can emulate floating point when required, it is not preferred to use 

floating point representation in FPGA because it is costly. Generally, it is rule of thumb to 

avoid floating-point in FPGAs and replace them with fixed-point representation. 

• Method 10, minimize use of high-cost arithmetic operations 

The relative costs of arithmetic functions on FPGAs are different than on microproces-

sors. For example, FPGA integer multiplication is efficient compared to addition, while divi-

sion is orders-of-magnitude slower. It is highly recommended to replace costly arithmetic op-

erations with simple operations. Even if the costly operation like division is fully pipelined to 

hide its latency, the cost remains high in chip area, especially if the logic must be replicated. 
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On FPGA, implementing unused functions is not necessary; recovered area can be used to 

increase parallelism. Thus, restructuring arithmetic with respect to an FPGA cost function can 

substantially increase performance.  

• Method 11, create families of applications, not point solutions 

 High performance computing applications are often highly parameterized and complex 

resulting in variations in applied algorithms as well as data format. While it is easy to support 

these variation on object-oriented technology, it is far more difficult to implement in current 

hardware description languages. But if those variation are implemented in HDL, it reduces 

development cost over a larger number of uses, enables higher reuse of the design, and relies 

less on skilled hardware designers for each application variation. 

• Method 12, scale application for maximal use of FPGA hardware 

 Parallelism is the most contributive component in increasing performance, yet part of 

accelerator design consists of instantiating as many processing elements (PEs) as the FPGA’s 

computing fabric will support. For example, automated sizing of complex arrays will become 

increasingly important for porting applications among FPGA platforms, given the frequency 

at which larger FPGAs become available. 

Adopting the aforementioned methods in HPC application implementation is a neces-

sary step in order to achieve high performance and avoid underutilizing FPGAs. Not all meth-

ods are required to be adopted in every HPC application, rather choosing which methods to 

adopt is dependent on the target application and FPGA platform. Since Convolutional Neural 

Network can be parallelized, can be represented in different precisions, dynamic, parametriz-

able, scalable, computational intensive, memory dependent, and flexible it is highly recom-

mended to consider most of the aforementioned methods.  
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In our implementation we took full advantage of the available parallelism in CNNs by 

utilizing the possible parallelism according to the available hardware resources in order to op-

timally utilize the FPGA. Further, we used suitable structures for our implementation and ex-

ploited the heterogenous resources available on the FPGA. We fully-pipelined our design in 

order to reduce worst slack time, i.e. hide latency. To consider appropriate arithmetic mode, 

and precision, we used fixed point representation for parameters instead of floating-point and 

bind that representation with appropriate precision that can reasonably meet desired accuracy. 

In our implementation we tried to minimize the use of high-cost arithmetic operations. Overall, 

our implementation is highly parallelized, fully-pipelined, reconfigurable, scalable, and highly 

optimized.  

Hardware Description Language and High-Level Synthesis 

Hardware description language and high-level synthesis are very correlated techniques 

as they share similar objectives that are achieved in different methodologies. Hardware de-

scription language and high-level synthesis are used to write code of algorithms that are in-

tended to be implemented on digital logic circuits such as FPGAs and ASICs.  

Hardware Description Language 

Hardware description Languages include VHDL, Verilog, SystemC and Handle-C. Be-

havioral, register transfer level and structural levels of description can be used inter-changea-

bly in these languages. VHDL and Verilog are matured as industry standards, while SystemC 

is a C++ based library used for modeling system level behavior, where processes can be easily 

modeled than in a more traditional HDL. Synthesis tools for SystemC are not as mature as 

VHDL or Verilog synthesis products. Handel-C is a relatively new product in comparison to 

VHDL or Verilog. Handel-C follows the Communicating Sequential Process (CSP) model. 
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Handel-C requires the designer to explicitly delineate parallel processing blocks within a pro-

cess. It includes intrinsic for inter-process communication, as does SystemC 2.0 [25]. 

Register Transfer Level (RTL) is the description of hardware designs, where program-

mers specify their algorithm details using a number of parallel processes that operate on vectors 

of binary signals and simple integer data types derived from them. These parallel processes are 

driven by the rising and falling edges of a clock signal and they describe combinational logic, 

basic arithmetic operations and registers. RTL descriptions are very close to the wires and logic 

gates that are available in the underlying FPGA technology, and therefore the hardware that 

results from RTL synthesis can be closely controlled. However, the process of transforming a 

given algorithm into processes, logic blocks, and finite state machines on the register transfer 

level is very long, tedious, and error-prone. Designers have to consider and make many design 

decisions before attempting to write any code, whereas later changes are difficult and costly. 

This in fact prevent iterative optimizations, demand a lot of intuition, experience and expert 

knowledge from designers in order to have a fully optimized and functional implementation of 

their target algorithm [24][35]. Hence, HDL development is not highly preferred by some re-

searchers as they lack the adequate HDL programming skillset.  

High-Level Synthesis 

In order to overcome the barriers introduced by development using HDL, decent re-

search has been conducted to increase the level of abstraction, reduce development round, and 

simplify implementation. High-Level Synthesis (HLS) offer designers an alternative path to 

implement algorithms. In HLS, a lot of implementation details are abstracted away and handled 

by the HLS compiler, where it replaces the development using HDLs with high-level program-

ming languages such as C, C++ or SystemC. The HLS compiler converts the code developed 

using high-level programming languages (sequential description) into a concurrent hardware 
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description, usually at the RTL level. HLS tools are grouped into five main categories: high-

level language-based frameworks, model-based frameworks, HDL-like languages, C-based 

frameworks, and parallel computing frameworks (i.e. CUDA/OpenCL).  

With HLS, designers can implement their designs through loops, arrays, floats, func-

tion calls, and other relevant arithmetic operations. The used loops, arrays, function calls, etc. 

are converted into counters, multiplexers, multipliers, memories, computation cores and hand-

shake protocols. The compilation can be guided using scripted compiler directives or compiler 

pragmas, which are meta-instructions interpreted directly by the HLS compiler [36][37]. Vi-

vado High-level Synthesis (Vivado HLS), offered by Xilinx, is the most common commercial 

HLS tool. 

Although HLS can provide faster development cycles, easier track for hardware imple-

mentation, and higher productivity; HLS tools do not provide sufficient optimization for a lot 

of applications. Optimization in HLS is limited and defined by the directives and programs 

that are embedded in the tool. As a matter of fact, HLS tools have been on the market for about 

15 years now, yet designers still use hardware description languages for their FPGA designs. 

The task of converting sequential, high-level software descriptions into fully optimized, paral-

lel hardware architectures is extremely complex. Although companies have invested hundreds 

of millions of dollars and years of research into HLS [38][39], the results attained are still 

highly dependent on the coding style and intricate design details. Because flaws and deficien-

cies in the compiler are only discovered during the design, the decision for HLS is associated 

with a non-negligible risk [40]. Having said that the implementation of algorithms using HDLs 

is tedious and complicated and optimization levels are not met using HLS, designers find them-

selves bound and have to trade off optimization for development round or vice versa.  
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Convolutional Neural Network models vary in size, yet small models are still consid-

ered large to be implemented using HDL. Actually, it is impractical to implement large or deep 

CNN models using HDL. Further, implementing deep CNN models using HLS might result in 

underutilizing those models, hence not achieving the best possible performance. To overcome 

the issue of long development round introduced by hardware description languages and un-

derutilization caused by the high abstraction introduced by High Level Synthesis, we present 

a graphic user-interface based tool that is designed to automatically generate an optimized 

VHDL code/implementation for Convolutional Neural Network models. The details of the 

generation tool are explained in CHAPTER 5.     
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CHAPTER 5.    VHDL GENERATION TOOL  

VHDL is one of the most common hardware description languages that is used to de-

velop hardware circuits at the register transfer level (RTL). In VHDL, designers typically spec-

ify their algorithm details using a number of parallel processes that describe some combina-

tional logic, and basic arithmetic operations and registers. These processes are driven by the 

rising and falling edges of a clock signal and they operate on vectors of binary signals and 

simple integer data types derived from them.  

The process of transforming an algorithm into processes, logic blocks, and finite state 

machines on the register transfer level is very long, tedious, and error-prone. As later changes 

are difficult and costly in this process, designers have to consider and make many design de-

cisions before attempting to write any lines of code. Developing using HDL requires a decent 

experience from the designer to reduce costly changes and ensure satisfying design results. 

Further, the difficulty of development in HDL prevents iterative optimization, demands a lot 

of intuition in order to have a fully optimized and functional implementation of algorithms. 

Thus, development using HDL is not highly preferred by a lot of researchers especially those 

who are not familiar with it. This actually makes FPGAs less attractive to accelerate an algo-

rithm. Further, CNN is a massive algorithm and implementing even a small size model like 

LeNet-5 [18], could take months making the implementation of a large-scale model such as 

AlexNet [8] impractical and infeasible.  
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Tool Overview 

Because it is impractical to implement CNN models especially large ones using HDL 

from scratch, we present a VHDL generation tool (VGT) based on Java language, that offers a 

parameterized implementation to achieve the following: First, overcome the barriers intro-

duced by high description languages and the limitations of HLS tools; Second, achieve high 

performance and avoid underutilizing CNNs; Third and last, significantly shorten the develop-

ment round and provide easy and iterative optimization. 

 

Figure 5.1 VGT: Proposed Solution 

As shown in Figure 5.1, by passing only the configuration of a CNN model to VGT, 

users can configure their CNN model and generate optimized VHDL code in a few seconds or 

minutes depending on the size of the implemented model. As of now, VHDL is the supported 

HDL language for realizing our implementations. The generated implementation is fully-pipe-

lined, each stage in the design is properly pipelined to hide latency; highly parallel, parallelism 

is highly utilized corresponding to the available hardware resources; scalable and reconfigura-

ble, the implementation can easily be reconfigured either using VGT or directly using the gen-

erated VHDL code in accordance to desired changes; and modular, the generated code is bro-

ken down into multiple VHDL modules, whereas each module represents a particular layer in 

the targeted CNN model.   

CNN Model 

VHDL Development Verification, functionality etc. 

FPGA 

VHDL Synthesis 
tool 

VGT 

Bit stream 

Model configuration 
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Figure 5.2 VHDL Generation Tool Flow 



www.manaraa.com

36 

 

• Configuration process: In this process, users set model specifications through the tool’s 

GUI (manual configuration) or through an external specification/configuration file. After 

configuration stage, users are prompted to verify their CNN model. Indeed, there are a set 

of rules that designers must adhere to when building a CNN model. In VGT, those rules 

are embedded to check the validity of the configured model. Only upon successful valida-

tion, users can proceed to the second process, where they can handle the parameters 

(weights and biases) of the target CNN model. 

• Parameters Inclusion process: Upon successful configuration and validation of a CNN 

model, users are prompted to provide the parameters of the target model. In this process, 

users are asked to provide the representation of parameters as well as desired precision. 

Further, users are asked to select what to do with the parameters depending on the size of 

the target model. There are two options for handling model parameters, either to hardcode 

them as part of the programmable logic and this applies to small sized models, or store 

them on an external memory source and this is the case of large scale models. Upon select-

ing desired precision, parameters representation, and storage type, users are prompted to 

include the parameters through the tool GUI. The tool run validation checks on imported 

parameters to verify if they match up with the configured model and parameters represen-

tation. If the parameters file content violates any of the aforementioned rules, then the file 

will not be imported/loaded to the tool and an information message will be displayed to the 

user stating what errors should be fixed. Upon successful parameters inclusion, code gen-

eration module is enabled and users can generate VHDL code for their model as well as a 

test-bench for simulation and validation purposes.  
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Figure 5.3 CNN Model Implementation Process 

Now that users have generated an optimized code for their implementation, they can 

simulate the generated code using the provided test-bench to check the functionality of the 

model as well as get a clue of the model’s performance. Also, users can skip simulation and 

can directly synthesis their model and generate a bitstream to run on an FPGA as shown in 

Figure 5.3.  

For small scale models, users only need to put their target dataset images on an external 

memory and establish communication with the accelerator without worrying about weights 

and biases since they are hardcoded as part of the programmable logic. For large scale models, 

users will need to store both parameters and target dataset images on an appropriate memory 

source like external memory alone, or external and on chip memories. Currently the tool only 

generates code for the CNN layers, and users have to take care of accelerator-memory com-

munication for loading/transferring images and parameters.  
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VHDL Generation Example Using VGT 

In this section we will give a thorough example on how to configure a simple CNN 

model using VGT and generate VHDL code for it. The example CNN model (VGTEST) is 

shown in Figure 5.4. The model is composed of two convolutional layers, two pooling layers, 

one fully connected layer, and a classification layer of two classes, zero and one.  

Model Setup 

 

Figure 5.4 VGTEST, example CNN model 

The configuration of the layers of our example model can be derived from Equation 

5.1, where 𝑭𝑴𝒔𝒊𝒛𝒆 is the output feature map size, 𝑰𝑴𝑨𝑮𝑬𝑾𝑰𝑫𝑻𝑯 is the input image size, 𝑭𝒔𝒊𝒛𝒆 

is the used filter size, Stride is the step size or shift of used filter over the input image, and 

Padding is the process of filling the edges of non-square images with zeros to make it divisible 

by used stride size.  

𝐹𝑀𝑠𝑖𝑧𝑒  =  
𝐼𝑀𝐴𝐺𝐸𝑊𝐼𝐷𝑇𝐻−𝐹𝑠𝑖𝑧𝑒+2×𝑃𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
 +  1 ( 5.1) 

The target model is used to classify images of handwritten 0s and 1s. The input image 

is grayscale and of size 28 × 28. In the first convolutional layer (Conv-1), three different fea-

ture maps are extracted through convolving the input image with kernels/filters of size 5 × 5. 

The stride of the convolutional filter is one, no padding is applied to the input image, and the 

applied activation function is rectified linear unit (ReLU). The output of the convolutional 



www.manaraa.com

39 

 

layer is passed to the first pooling layer (Pool-1), where maximum pooling (max-pool) function 

is applied using a filter size 2 × 2. Basically, in max-pool the maximum neuron value in the 

filter is passed to the corresponding neuron in the next layer and the rest of neurons are dropped 

out as shown in the following Equation 5.2.  

𝑃𝑎𝑠𝑠𝑒𝑑𝑛𝑒𝑢𝑟𝑜𝑛 → 𝑚𝑎𝑥(2𝑥, 𝑥, 0.5𝑥, 3𝑥)  = 3𝑥 ( 5.2) 

The second convolutional layer (Conv-2) takes in three input maps of size 12 × 12 

and extracts 5 new feature maps for each input feature map. Conv-2 uses kernels of size 5 × 5 

with a stride size of one and no padding, and ReLU is used as the activation function. The 

output of Conv-2 is 5 feature maps of size 8 × 8. The second pooling layer (Pool-2) is similar 

to the first one except that the input maps size is 8 × 8 and the output maps size is 4 × 4.  

The Fully connected layer (FC) is similar to the convolutional one, but convolution is 

replaced with matrix multiplication. The FC layer constitutes most of the parameters/connec-

tions in the network, which are more than the total number of parameters for both of the con-

volutional layers combined. In this layer, 8 feature maps are extracted for each incoming fea-

ture map from the second pooling layer. The total number of parameters in the FC layer can 

be calculated as shown in Equation 5.3. The used activation function is ReLU. 

𝐹𝐶𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 → 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 × 𝐼𝑁𝑚𝑎𝑝 ×  𝑂𝑈𝑇𝑚𝑎𝑝𝑠 + 𝑂𝑈𝑇𝑚𝑎𝑝𝑠 =

42 × 5 ×  8 +  8 = 648. ( 5.3) 

Equation 5.3 can also be used to calculate the number of parameters for convolutional 

layers by replacing 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 with 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒
2
, so the total number of parameters for the first 

and second convolutional layers would be 458. The last layer in the network is the classifica-

tion layer, which is basically represented by the SoftMax classifier with normalizes the output 

of the fully connected layer into a probabilistic value between (0,1).  
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Table II VGTEST CNN model summary. 

Layer 𝑀𝐴𝑃𝐼𝑁−𝑆𝐼𝑍𝐸  𝑀𝐴𝑃𝑂𝑈𝑇−𝑆𝐼𝑍𝐸  𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒   Features Activation Stride Padding 

Input image 28 × 28 24 × 24 - Grayscale - - - 

Conv-1 24 × 24 12 × 12 5 3 ReLU 1 0 

Pool-1 12 × 12 8 × 8 2 - Max-Pool 2 0 

Conv-2 8 × 8 4 × 4 5 5 ReLU 1 0 

Pool-2 4 × 4 1 × 1 2 - Max-Pool 2 0 

FC 1 × 1 1 × 1 1 8 ReLU 1 0 

Classification 1 × 1 1 × 1 - 2 SoftMax - - 

Model Configuration 

VGT comprises three configuration stages that a user has to go through to generate a 

complete VHDL code for a CNN model. In this subsection, we will configure VGTEST model 

using VGT’s graphical user-interface. 

• Platform and Network Selection  

In this block, users have to specify network style and target FPGA platform. 

 

Figure 5.5 Platform and network style selection 
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• Model Configuration Block 

In this block, users can configure their target CNN network manually using VGT GUI 

or load configuration of a pre-configured model from an external text file as shown in Figure 

5.6 and Figure 5.7.  

 

Figure 5.6 Manual CNN model configuration 

 
Figure 5.7 Loading configuration file of a pre-configured CNN model  
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Once configuration is complete, user is prompted to validate their configuration to en-

sure it meets standard CNN configuration. On unsuccessful validation check, a prompted mes-

sage is displayed to the user to inform them of what changes they have to make to fix errors.  

 

Figure 5.8 Incorrect configuration due to wrong stride size used in the 4th layer 

On a successful validation check, the user can export their configuration to an external 

storage source in case they need to reuse the same configuration later. Load Weights and Biases 

button gets enabled only on successful validation check, then users can proceed to next stage, 

which is parameters inclusion. Supported configurations by the VGT are shown in Table III. 

Table III Supported Configurations 

Image Size User-defined 

Output Classifier SoftMax 

Filter Size User-defined 

Feature maps User-defined 

No. of Classes User-defined 

Layer type Convolution, Pooling, FC, LRN 

Activation Functions ReLU, Tanh, Sigmoid, Average 

and Max Pool 
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Figure 5.9 Successful configuration check 

• Parameters Inclusion Block 

In parameters inclusion block users are prompted to specify desired precision of target 

model, parameters representation, and parameters storage type. The tool supports three repre-

sentations (decimal, hexadecimal, and binary) and the used representation in the generated 

VHDL is fixed point. The tool supports different precisions from 1-bit up to 32-bits. If users 

choose to the hardcoded-constants storage type, then parameters are consolidated within the 

generated VHDL code as part of the programmable logic (PL).  

Parameters must be formatted according to model configuration in order to have a suc-

cessful VHDL generation. In parameters file, users should specify layers name, list all kernels 

used in each feature map along with their weights, specify biases value, and end each line with 

a dollar sign. This will be explained in details in a later section. The sizes of weights and biases 

are specified in the GUI, so for our example the tool is expecting binary representation of a 

weight size of 5-bits and a bias size of 2-bits. If parameters file does not correspond to config-

uration, an error message will be displayed to the user highlighting the issue. Figure 5.10 illus-

trates the options given to incorporate parameters.  
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Figure 5.10 Parameters inclusion block for the example model 

 

Figure 5.11 Successful parameters inclusion 

On an unsuccessful incorporation of parameters from an external file, users are 

prompted with an error message stating what fixes they should do in order to proceed. On a 

successful load as shown in Figure 5.11, “Generate VHDL files and Generate test-bench” but-

tons are enabled and users can now generate VHDL code for the targeted model.  
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Figure 5.12 Generated VHDL files for VGTEST model 

External Files/Dependencies 

The VHDL generation process depends on two external files, one is required and the 

other is optional. The optional file is the external configuration file and the required file is the 

parameters file. The syntax for both files is explained in details in this subsection 

•  Configuration File Syntax 

 

Figure 5.13 Configuration file syntax of the example model 

N_Layer,5, 
Image_Size,28, 
Image_type,Grayscale,8, or  Image_type,Colored,24, 
N_Classes,2, 
Classifier,SoftMax, 
Convolution,3,5,0,1,ReLU, or  Sigmoid, Tanh 

Pooling,3,2,0,2,Max-Pool, or  Avg-Pool 
Convolution,5,5,0,1,ReLU, 

Pooling,5,2,0,2,Max-Pool, 
Fully-Connected,8,1,0,1,ReLU, 

Features 
map Filter 

size 
Padding Stride 



www.manaraa.com

46 

 

Figure 5.13 shows the configuration syntax for VGTEST, where N_Layer represents 

the number of layers in the network; Image_Size is the input image dimension; Image_type 

specifies the type of image if colored or grayscale and 8 represents the input data (pixels) width, 

where 24 is for colored and 8 is for grayscale; N_classes represents the number of output clas-

ses and Classifier is the used classifier function; Convolution,2,2,0,2,Max pool respectively 

represent layer name, number of output feature maps, filter size, padding, stride size, and used 

activation function; the same syntax applies to pooling and fully connected layers. 

• Configuration File Syntax 

 

Figure 5.14 Random parameters syntax file of the example model  

Convolution,1 

Fiter_1,00001,00010,00011,00010,00001,00010,00011,00010,00001,00010,00011,00010,00001,0
0010,00011,00010,00001,00010,00011,00010,00001,00010,00011,00010,00010,01,$ 
Filter_1_2,00001,00010,00011, …….. ,00010,01,$ 

Filter_1_3,00001,00010,00011, …….. ,00010,01,$ 

Pooling,1 

Convolution,2 

Filter_1_1,00001,00010,00011, …….. , 00010,01,$ 

Filter_1_2,00001,00010,00011, …….. ,00010,00,$ 

Filter_1_3,00001,00010,00011 , …….. , 00010,00,$ 

Filter_2_1,00001,00010,00011 , …….. , 00010,01,$ 

… 
… 
… 
Filter_5_3,00001,00010,00011 , …….. , 00010,01,$ 

Pooling,2 

Fully-Connected,1 

Filter_1_1,00101 , …….. , 00111,01$   
Filter_1_2,00111 , …….. , 00111,00$ 

Filter_1_3,00101 , …….. , 00111,00$ 

Filter_1_4,00110 , …….. , 00111,00$ 

Filter_1_5,00110 , …….. , 00111,00$ 

… 
… 
… 
… 
… 
… 
Filter_8_5,00110 , …….. , 00111,00$ 

5 x 3 Feature maps of size 5x5 

8 x 5 Feature maps of size 4x4 

Three Feature maps with filters of size 5x5 
Weights  5bit, Biases 2bits 
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Figure 5.14 shows the syntax of parameters file of our example model. Users must 

structure this file as follows: Start with layer name followed by its feature maps and filters with 

their weights and biases. Naming is case sensitive for layers, but not for filters. Must end lines 

with a dollar sign. This file should be consistent with the configured model in configuration 

stage as well as in parameters inclusion stage, otherwise it will not be accepted by the tool and 

will result in an error message. Possible reasons for not accepting a parameters file could be; 

invalid file extension or non-matching content; inconsistent filter size, number of layers/filters, 

or data representation; missing biases or dollar sign at the end of each line. 

VHDL code Generation Process 

This section illustrates the process of VHDL code generation using Java. The process 

of auto generation is based on the concept of parametrized design implementation. The con-

figuration process is divided into three blocks; platform and network selection block, model 

configuration block, and parameters inclusion block. 

• Architecture constructor 

Architecture constructor is the core block of the generation tool, where it analyzes the 

specifications of configured CNN models and make design decisions based on these specifi-

cations. There are four modules that are connected to the architecture constructor, which are 

described as follows: graphical user-interface classes, parameterization library manager, 

VHDL code generator, and VHDL code storage.  

• Graphical User Interface 

Graphical user-interface provide the possible configurations of a valid Convolutional 

Neural Network to users and is divided into model configuration interface and parameters in-

clusion interface. In model configuration, a complete set of pre-defined layers configuration 
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are provided to help users easily build their models. Further, a sub-module for storing config-

uration is provided in this block. As for parameters inclusion, a set of -pre-defined parameters 

are provided in order to format weights and biases. Additionally, a complete parser is con-

structed to parse weights and biases in order to check their validity. 

• Parameterization Library Manager 

This module handles layer templets and supported functions in each templet. The main 

layers in a CNN are convolutional, pooling, and fully-connected layers, and there are three 

templets, one for each layer, that include needed functions to implement these layers. For ex-

ample, a convolutional layer is composed of convolution operations followed by bias addition, 

and activation function operations. The convolution operation can be realized in different 

means that include but are not limited to, systolic array or sliding window. These two functions 

are stored in the convolutional layer templet and based on the incoming specifications that are 

passed by the architecture constructor, particular functions are selected and structured in a par-

ticular manner. Similarly, there are different activation functions that include but are not lim-

ited to, rectified linear unit, Tanh, or sigmoid, which can be formed/structured based on the 

specifications passed by the architecture constructor. This parameterization process also ap-

plies to pooling and fully-connected layers and that is according to their respective functions. 

• VHDL code generator and storage 

VHDL generation and storage is the last stage in the generation process. Upon passing 

model specifications to parametrization library manager, actual CNN layers are formed based 

on the available templets, hence generation process can take place. Once the parameterization 

process is complete, the code generator writes VHDL code and stores it in a designated folder 

relative to the location of the tool on hard-drive.
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Figure 5.15 VHDL code generation process 
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Generated VHDL Details  

This section explains the details of auto-generated VHDL, and provides example snap-

shots of the generated code for the first convolutional layer of VGTEST. The generated VHDL 

files are structured into six sections as shown in the following chart. 

 

Design details section is basically a header text that gives details about the generated 

network such as targeted FPGA platform, implemented network, performance estimation, and 

other useful guidelines to implement the network on FPGA.  

 

Figure 5.16 Snapshot of generated VHDL code header section 

Generic module specifies the parameters that can make the design reconfigurable with-

out having to make significant changes to the design itself. For example, since FIFO size is 

parametrizable, the size can be changed through changing the representing constant of FIFO 

size in the generic module without re-writing any VHDL code. We provided this module in 

order to ensure reconfigurability of the design without having to reuse VGT to reconfigure the 

network by generating new VHDL code.  

Sections Design Details

Generic Module

Signals Declaration

Weights and Biases

Internal Module Instantiation 

Combinational Processes

--GENERATION DATE/TIME: Thu Dec 25 22:11:56 CST 2017 

-- Engineer:    Muhammad Hamdan 

-- Design Name:  HDL GENERATION - CONV LAYER  

-- Module Name:  CONV_1 - Behavioral  

-- Project Name:  CNN accelerator 

-- Target Devices: Zynq-XC7Z020 

-- Number of Operations: 30 

-- Number of Clock Cycles: 6 
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Figure 5.17 Snapshot of generic module from model entity 

 

Figure 5.18 Snapshot of signals declaration section 

GENERIC (  

  constant PERCISION   : positive := 5;   

  constant DOUT_WIDTH   : positive := 5;   

  constant BIAS_SIZE   : positive := 5;   

  constant MULT_SIZE   : positive := 13;   

  constant MULT_SUM_SIZE : positive := 6;   

  constant DIN_WIDTH   : positive := 8;   

  constant IMAGE_WIDTH  : positive := 13;    

  constant F_SIZE     : positive := 2;   

  constant WEIGHT_SIZE  : positive := 5;   

  constant BIASES_SIZE  : positive := 2; 

  constant STRIDE     : positive := 1;   

  constant FEATURE_MAPS  : positive := 3;   

  constant VALID_CYCLES  : positive := 144;  

  constant STRIDE_CYCLES : positive := 12;   

  constant VALID_LOCAL_PIX: positive := 12;   

  constant ADD_TREE_DEPTH : positive := 2;   

  constant INPUT_DEPTH  : positive := 1; 

  constant FIFO_DEPTH   : positive := 12;   

  constant USED_FIFOS   : positive := 1;   

  constant ADD_1     : positive := 2;     

  constant ADD_2     : positive := 1;     

  constant LOCAL_OUTPUT  : positive := 5  );  

 

---------------- ARCHITECTURE DECLARATION - START---------------------- 

 

architecture Behavioral of CONV_LAYER_1 is 

 

------- INTERNAL FIXED CONSTANT & SIGNALS DECLARATION - START----------- 

type    FILTER_TYPE  is array (0 to F_SIZE-1, 0 to F_SIZE-1) of 

signed(WEIGHT_SIZE- 1 downto 0); 

type    FIFO_Memory  is array (0 to FIFO_DEPTH - 1) of STD_LOGIC_VEC-

TOR(DIN_WIDTH - 1 downto 0); 

type    SLIDING_WINDOW     is array (0 to F_SIZE-1, 0 to F_SIZE-1) of 

STD_LOGIC_VECTOR(DIN_WIDTH- 1 downto 0); 

signal   VALID_NXTLYR_PIX    :integer range 0 to STRIDE_CYCLES; 

signal   PIXEL_COUNT       :integer range 0 to VALID_CYCLES; 

signal   OUT_PIXEL_COUNT     :integer range 0 to VALID_CYCLES; 

signal   EN_NXT_LYR_1      :std_logic; 

signal   FRST_TIM_EN_1      :std_logic; 

signal   Enable_MULT       :std_logic; 

signal   Enable_ADDER      :std_logic; 

signal   Enable_ReLU       :std_logic; 

signal   Enable_BIAS       :std_logic; 

signal   SIG_STRIDE       :integer range 0 to IMAGE_SIZE; 

signal   PADDING_count      :integer range 0 to IMAGE_SIZE; --  

 



www.manaraa.com

52 

 

Signals declaration is simply a section where all the design signals are defined. We put 

the signals all together in one section to ensure better readability and easy redefinition or ad-

dition of old or new signals if needed.  

The weights and biases section handles hardcoding the weights and biases of the model. 

This section only applies to small-scale networks. In this section, all filters with their weights 

are stored in two dimensional matrices as constants followed by their respective biases.  

 

Figure 5.19 Snapshot of weights and biases section 

Internal module instantiation section takes care of instantiating other layers since the 

code was based on a modular generation approach.  

 

Figure 5.20 Snapshot of internal module instantiation 

------------- FILTER HARDCODED CONSTANTS -WEIGHTS START---------------- 

constant FMAP_1: FILTER_TYPE:=   (("00001","00010"),("00011","00010")); 

constant FMAP_2: FILTER_TYPE:=   (("00001","00010"), ("00011","00010")); 

constant FMAP_3: FILTER_TYPE:=   (("00001","00010"), ("00011","00010")); 

constant BIAS_VAL_1: signed (BIASES_SIZE-1 downto 0):="01"; 

constant BIAS_VAL_2: signed (BIASES_SIZE-1 downto 0):="01"; 

constant BIAS_VAL_3: signed (BIASES_SIZE-1 downto 0):="01"; 

 

------------------ MAP NEXT LAYER - COMPONENTS START-------------------- 

COMPONENT POOL_LAYER_2 

  port(  CLK,RST     :IN std_logic; 

  DIN_1_2,DIN_2_2, DIN_3_2:IN std_logic_vector(LOCAL_OUTPUT-1 downto 0); 

  VALID_OUT_2, EN_STREAM_OUT_2 :OUT std_logic; 

  DOUT_1_2, DOUT_2_2 :OUT std_logic_vector(DOUT_WIDTH-1 downto 0);              

  EN_STREAM ,EN_LOC_STREAM_2 :IN std_logic ); 

END COMPONENT POOL_LAYER_2; 

begin 

POOL_LYR_2 : POOL_LAYER_2  

     port map( 

     CLK         => CLK, 

     RST         => RST, 

     DIN_1_2       => DOUT_BUF_1_1, 

     DIN_2_2       => DOUT_BUF_2_1, 

     DIN_3_2       => DOUT_BUF_3_1, 

     DOUT_1_2      => DOUT_1_2, 

     DOUT_2_2      => DOUT_2_2, 

     VALID_OUT_2     => VALID_OUT_2, 

     EN_STREAM_OUT_2   => EN_STREAM_OUT_2, 

     EN_LOC_STREAM_2   => EN_NXT_LYR_1, 

     EN_STREAM      => EN_STREAM  ); 
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 Finally, the combinational process section is the actual implementation of the target 

layer. In this section, convolution, pooling, matrix multiplication, bias addition, adder tree, or 

activation function operations are applied. The combinational process takes care of processing 

data, and the synchronous process updates data every clock cycle.  

Table IV Supported operations by the combinational process for CNN layers. 

Function/Applicable Layer CONV POOL First FC Later FCs 

Signals Reset ✓ ✓ ✓ ✓ 

Matrix/Vector Multiply  ✓ × ✓ ✓ 

Max/Average Pooling  × ✓ × × 

Feature Maps Adder Tree ✓ × ✓ ✓ 

Filter Values Adder Tree ✓ × ✓ × 

Bias Addition ✓ × ✓ ✓ 

Activation Function ✓ ✓ ✓ ✓ 

Process End  ✓ ✓ ✓ ✓ 
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CHAPTER 6.    RELATED WORK 

This chapter covers two main components, a thorough survey on hardware implemen-

tations of Convolutional Neural Networks and related FPGA-based implementations of Con-

volutional Neural Networks to this work. 

Survey on Hardware Implementations of CNNs 

Deep Neural Networks (DNNs) became popular algorithms recently in center-based 

services and standalone-embedded applications. A prominent type of DNNs that has attracted 

many researchers interest is Convolutional Neural Networks (CNNs). CNNs are used in vari-

ous applications such as visual recognition, handwritten digit recognition, web search, speech 

recognition, etc. A huge work has been done over the years to improve the performance and 

increase the accuracy of CNNs to meet different application requirements. This made CNNs 

computationally very intensive. Thus, to accelerate CNNs and maintain their desired accuracy, 

an efficient implementation on hardware is needed. Because CNNs are naturally parallel, mod-

ular and dynamically adaptive, reconfigurable and custom architectures seem to be well suited 

for the job. A lot of work has been done in the area of CNNs acceleration, and many CNNs 

accelerators have been proposed for different purposes and with different techniques. 

In this survey, we will present the hardware implementations (Accelerators) of CNNs 

in the following structure. Accelerators will be categorized into three primary platforms: (1) 

Custom Hardware Platform; (2) Graphics Processing Unit (GPU) Platform; (3) Field-Program-

mable Gate Array (FPGA) Platform. Under each platform, work of the same or similar objec-

tive will be grouped and presented all together.  
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Custom Hardware Platform 

Architecture specialization is seen as a promising path to achieving high performance 

at low energy, provided it is possible to find ways to accommodate architecture specialization 

and flexibility. Designing a highly specialized and efficient hardware could likely benefit many 

of emerging high-performance applications [41].  

DaDianNao, a custom multi-chip machine-learning accelerator implemented by Yunji, 

et al. [41], can outperform the NVIDIA K20M GPU by up to 450.65x, and reduce energy by 

up to 150.31x using 64 nodes. DaDianNao is based on DianNao, a small-footprint high 

throughput accelerator proposed by Chen et al [42]. The general architecture is a set of identical 

nodes, one per chip. Each node contains significant storage, especially for synapses, and neural 

computational units. Authors tackle bandwidth requirements issue through the following de-

sign principles: (1) create a fully distributed architecture; (2) create an asymmetric architecture 

where each node footprint is massively biased towards storage rather than computations; (3) 

transfer neurons values rather than synapses to minimize required external bandwidth; (4) 

break down the local storage into many tiles to enable high internal bandwidth.  

While DianNao can perform 452 G-ops/s consuming only 485mW, DaDianNao can 

perform 5.58 T-ops/s with only a single node, consuming 15.97W for the whole chip. Having 

DaDianNao consuming this amount of power makes the system impractical to be implemented 

in mobile devices. ShiDianNao, an energy-efficient design of a visual recognition accelerator 

implemented by Du, Zidong, et al [43], is 60x more energy efficient than DianNao [42], where 

it can perform 194G-ops/s at its peak, consuming only 320.10 mW.  

It is worth mentioning that designs in [41], [42], and [43] are hardwired, thus cannot 

efficiently adapt to different network sizes. Vinayak, et al. [44] present a scalable, low-power 
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coprocessor for enabling real-time execution of deep neural networks called nn-X (Neural Net-

work Next). The system is composed of a coprocessor, a host processor (ARM Cortex-A9), 

and an external memory. The coprocessor has three main components: processing elements 

called collections, a system bus called memory router, and a configuration bus to control data 

flow. Each collection is comprised of one convolution engine, one pooling module, and one 

non-linear programmable operator. The convolution engine is implemented as fully pipelined 

logic and uses memory to cache incoming data. The non-linear operation computes a piecewise 

linear approximation of any arbitrary non-linear function. The performance of nn-X in deep 

learning applications peaks 200 G-ops/s while consuming less than 4 watts of power.  

GPU Platform 

Working with custom architectures requires special hardware skills that many research-

ers might not possess. Researchers who are familiar or well suited with high-level program-

ming languages tend to accelerate CNNs using GPUs. GPUs are inexpensive, available in most 

recent computers, and easily programmable with standard development kits. Indeed, GPUs can 

achieve very high performance, but with high-energy consumption.  

Fabian, et al [45] present a ConvNet GPU-based accelerator to tackle face detection 

under pose variation. The GPU is mainly used to explore and take advantage of the inherent 

possible parallelization of CNNs. On NVidia GeForce 8800 GT at 600MHz, the system pro-

cessed 640 × 480 images at 209 - 497ms per frame on average for eight runtime measurements.  

In the same context, Li, Haoxiang, et al [46] also present a GPU-based accelerator for the same 

application under visual variations. They adopt a cascaded architecture that operates at multi-

ple resolutions. The GPU can process VGA-resolution images at 100 FPS. 
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FPGA Platform 

GPUs do not fit well in energy constrained and mobile embedded systems, because of 

their significant energy dissipation. Custom hardware offer a good performance and energy 

efficient solution at the disadvantage of significant fabrication cost and limited flexibility [47]. 

FPGA-based accelerators have attracted more and more attention of researchers because they 

have the advantages of good performance, high energy efficiency, fast development round, 

relatively moderate cost, and capability of reconfiguration [48]. A lot of work has been carried 

out to accelerate CNNs using FPGAs. Proposed CNN accelerators can be generally classified 

into two groups: computation engine optimization and memory system optimization. 

• Memory System Optimization 

Memory bandwidth bottleneck is a critical issue in the acceleration process. Overcom-

ing this barrier can significantly improve the performance of CNN acceleration process.  

Generic Memory System Optimization 

A matrix multiplier based accelerator architecture was proposed by Yuran, et al [49] to 

accelerate the fully connected (FC) and convolutional (CONV) layers of a CNN. In their work 

they handle a couple of presented problems as follows: (1) use a stream mapper unit to handle 

the overhead of unrolling the convolutions to matrix multiplications; (2) use a prefetch unit 

structure to make the address stream to the external memory sequential; (3) optimize a blocking 

strategy to make matrix multiplications of different sizes perform efficiently. The accelerator 

consists of several processing-unit (PE) chains where each one has a stream-prefetcher, a 

stream mapper and a matrix multiplier where the latter accelerates the matrix multiplication in 

the CONV and FC layers. The stream store/load (S/L) loads operands to the PE chain and then 

stores the results. The stream mapper remaps the data stream to the stream S/L to unroll con-

volutions to matrix multiplication, and the stream prefetcher is used to ensure efficient external 
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memory access. A host processor is used to handle workload except for the convolutional lay-

ers. It communicates with the accelerator through a system bus and they both share the external 

memory. Based on dual core ARM cortexA9 running at 800MHz (The host processor), and 

Zynqzq7045 FPGA chips using 1600 DSP48Es running at150MHz, the system achieved an 

average throughput of 77.8 GFLOPs.  

Manoj, et al. [50] accelerate CNNs for speech recognition applications. They reduce 

total data transfer between layers through fusing the processing of multi-ConvNet layers (i.e. 

exploiting the locality in a convolution’s data flow) to avoid using off-chip memory to store 

intermediate data between layers since the data is too large. The HLS tool (Xilinx Vivado HLS 

2015.4.2) is used to transform C++ code into hardware and handle pipelining of the arithmetic 

units and DRAM transfers. The design employs loop transformations to reorder computations, 

increase throughput, and reduce data transfer. Loops are fully unrolled of dimensions Tm X 

Tn (adders and multipliers) and to be optimized to maximize the performance. The in, out, and 

weight arrays represent on-chip buffers for input, output, and weight data to reduce off-chip 

memory access. Copying data in or out of these buffers is done using double buffering to over-

lap data transfer with computation. Implemented on Virtex-7 and applied to AlexNet's first two 

layers, the fused layer archived 28% savings in off-chip data transfer, however, DSP, BRAMs, 

and about 50% in FPGA's LUTs and FFs increased. They claim that the increase is due to not 

fusing the non-linear layers. Further, the accelerator was applied to the first five convolutional 

layers of the VGG model. The fused layer accelerator minimized off-chip feature map data 

transfer, reducing the total transfer by 95%, from 77MB down to 3.6MB per image. 
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A memory-centric accelerator was developed by Maurice, et al [51] to improve perfor-

mance without increasing memory bandwidth through a flexible memory hierarchy that sup-

ports complex data access through tiling. The accelerator uses BRAM-based multi-bank on-

chip buffers to minimize the required bandwidth through data reuse. To ensure reconfigurabil-

ity and programmability, a cluster of SIMD type of Multiply Accumulate (MACC) PE is used 

to accelerate the convolutions. Based on implementation on the Virtex-6 FPGA running at 

150MHz, the accelerator shows a reduction of FPGA resources of up to 13x while maintaining 

the same performance.  

Resource Utilization 

Yongming, et al. [52] state that, the organization of computation modules in [51] de-

pends on the number of output feature maps and their number of rows. Because both of these 

parameters can change drastically from layer to layer, an analogous resource underutilization 

problem occurs. Yongming, et al. present an accelerator where they partition FPGA resources 

into multiple convolutional layer processors (CLPs) to maximize resources utilization for a 

higher overall throughput and computational efficiency. A Typical CLP for a convolutional 

layer is structured as buffered inputs and weights that are forwarded to a vector dot product 

block, summed with previous output that is stored in an output buffer, and then stored in the 

output buffer. The accelerator operation timeline is segmented wherein each segment each CLP 

sequentially processes its layers. The segment ends when all CLPs finish. Applied to AlexNet 

on the Virtex-7 485T FPGA, the Multi-CLP accelerator yields a 3.33x higher throughput com-

pared to the Single-CLP used in [47] using the same resources. The Multi-CLP achieved 99% 

dynamic utilization, where the single-CLP has dynamic utilization of less than 66%.  
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Chen, et al. [47] propose a design space exploration methodology for CNNs accelera-

tion by optimizing both computation resources and external memory accesses. In this work, 

they only implement convolutional layers. They optimize the external memory transfers 

through data reuse. The computation engine is implemented as a tree-shaped poly-structure 

with 7 inputs from input feature maps, 7 inputs from weights, and one input from bias. 64 poly 

structures are duplicated for unrolling loop Tm. For efficient memory access, on-chip double-

buffers are built to operate in a ping-pong manner to overlap data transfer time with computa-

tion. They use external data transfer engines to provide data transfer between the accelerator 

and the external memory and to isolate the accelerator from various platform and tool specific 

bandwidth features. Loop pipelining is applied to improve the system throughput by overlap-

ping the execution of operations from different loop iterations. Implemented on Vivado HLS 

on VC707 board with Xilinx FPGA chip Virtex7 485t running at 100MHz, the accelerator 

achieved an overall performance of 61.62 GFLOPS. 

Jiantao, et al. [53] state that optimization approaches that are done by [52] and [54] can 

be integrated with their work since they both work on the organization of computation units. 

Data reuse in the convolution layers is applied multiple times to reduce the bandwidth. FC 

layers weights are compressed through using Singular value decomposition (SVD). Floating-

point numbers are converted into fixed-point ones. The FPGA programmable logic consist of 

a computing complex, on-chip buffers, a controller, and memory interface streaming engines 

(DMAs). The computing complex consists of PEs that do the computations of convolution, 

pooling, and FC layers and on-chip buffers prepare data to be used by the PEs and to store the 

results. The controller fetches instructions from an external memory and decodes them to or-

chestrate all modules except the DMAs on the PL. The DMAs transfer data and instructions 

https://en.wikipedia.org/wiki/Singular_value_decomposition
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between the external memory on the processing system (PS) side and the on-chip buffers on 

the PL side. To fully utilize the bandwidth for FC computations a convolver complex in one 

of the PEs is used. They implemented VGG16-SVD on Zynq ZC706 running at150MHz, and 

achieved a frame rate at 4.45 fps using 16-bit quantization. The average performance of the 

convolutional layers and the full ConvNet is 187.8 G-ops/s and 137.0 G-ops/s. 

• Computation Engine Optimization 

Parallelization Exploration 

A typical approach to optimize the computational engine is parallelism exploration, and 

there is a lot of work that has been carried out to optimize computation through this technique.  

Generic Parallelization Exploration 

Ning, et al. [55] present a multistage data-flow implementation of a complete CNN for 

high-speed object recognition. They use a 3D convolver that is connected with FIFO for con-

volution. A rectified linear unit is used as the activation function. The global summation is 

used to overcome regular multiplication in the FC layer to save memory and DSP resources. 

Accumulators are used to obtain the summation of each feature map. For memory access effi-

ciency, the memory is used as a buffer to store the computation results and serve the input of 

the next layer and a recurrent ConvNet is used to improve the capability of object recognition. 

Based on Altera Stratix V 5SGSMD5K2F40C2 running at 130MHz, the design achieved a 

performance of 409.62 G-ops/s for image size of 32×32, consuming 1113.88 mW 

An accelerator that advances the work in [47] was presented by Motamedi, Moham-

mad, et al [48]. They advance the work in [47] through the consideration of all sources of 

parallelism. A Parallel convolution engine (PCE) that is combined of parallel block multipliers 

with their corresponding adders, exploits intra-kernel parallelism in each convolution. Then, a 

combination of PCEs with their corresponding adders perform inter-kernel parallelism. Tiling 
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is used in the kernel and feature map levels to manage data transfer and increase performance. 

On-chip buffers are used to hold the necessary data. Implemented on the VX485T FPGA and 

applied to AlexNet with 32-bit float point precision, the accelerator achieved an overall per-

formance of 84.2GFLOPs that is 1.9x speedup compared to work in [47].  

Huimin, et al. [31] present a CNN accelerator with all layers working concurrently in 

a pipelined style to increase throughput. A batch-based computing method is implemented and 

applied on FC layers to increase the memory bandwidth utilization. Between each layer, there 

are two ping-pong buffers, where the former layer may write to/read from one of the ping-pong 

buffers while the next layer reads data from the other buffer. The ping-pong buffers are also 

utilized to store the intermediate data to handle the input data and weights, thus reducing data 

access workload. This work adopts the 3 types of parallelism (Intra-output parallelism, Inter-

output parallelism and parallelism within a convolution operation) as proposed in [56]. Using 

Xilinx VC709 running at 156MHz and applied to AlexNet, the system achieved a peak perfor-

mance of 565.94 G-ops/s and 391 FPS, consuming 30.2W by the FPGA board. 

Systolic array implementations 

Systolic array implementations seem to be a natural fit to CNNs because they are very 

efficient at filtering but are very inflexible. Systolic implementations support only convolu-

tions up to the implemented kernel size [51].  

Murugan, et al. [57] accelerate CNNs using a programmable massively parallel copro-

cessor coupled with off-chip memory. The coprocessor uses off-chip memory as a scratchpad 

to manage the large intermediate data between CNN layers. Memory load in this work is re-

duced through using low precision data by packing multiple works in every memory operation. 

They dedicate 20-bits fixed point for kernel weights and 16-bits for all other values. The system 

architecture is organized in parallel as a cluster of vector processing elements, which are arrays 
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of 2D convolvers. In this work, parallelism is mainly used within feature maps and convolution 

kernel. On Xilinx Virtex-5 LX330T running at 115MHz, the coprocessor processed 640×480 

images with 16bit-pixel precision at 6 FPS, consuming 11 watts. 

Srimat, et al. [56] present a dynamically configurable co-processor that automatically 

analyzes workloads and configure its hardware and software components to match the exact 

mix of different types of parallelism in the workload. In this work, they propose three types of 

parallelism, Intra-output parallelism, Inter-output parallelism and parallelism within a convo-

lution operation; however, they apply only the first two mentioned types. The co-processor is 

a stateless processing core that consists of 20 2D-convolvers connected to an external memory 

and a memory subsystem that consists of three independent memory banks each has one single 

ported memory. No internal storage is used and an input switch is used to allow the convolvers 

to be dynamically grouped in different ways based on memory bandwidth; however, the size 

of the convolver is still fixed. Implemented on Virtex 5 SX240T FPGA running at 120MHz, 

the co-processor processed images of size 640 x 480 at 25 - 30 FPS rate and achieved a speedup 

of 4.8x compared to [58], consuming less than 14W. 

Clément, et al. [58][59][59][59][58][58][59] developed an FPGA stream processor 

called CNP for real-time object recognition. The CNP contains a control unit, a parallel vector 

arithmetic, a logic unit (VALU), an I/O control unit, and a memory interface. The control unit 

is used to sequence the hardwired operations of the VALU (2D convolutions, spatial pool-

ing/subsampling, point-wise non-linear functions, and other more general vector operators). 

Parallelization was achieved through an arbiter (multiplex/de-multiplex) that accesses the same 

memory location simultaneously through 8 FIFO buffered ports. All operations were per-

formed with 16-bit fixed-point precision. On Xilinx virtex-4 SX35 FPGA running at 200MHz 
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consuming 15W, the system achieved a processing speed of 10 FPS, processing a full 512 × 

384 greyscale images. 

A study on the effect of limited precision data representation and computation on neural 

networks training was conducted by Suyog, et al [60]. This work is built upon the idea that 

algorithm-level noise tolerance can be leveraged to simplify underlying hardware require-

ments. The system consists of systolic array of multipliers, an on-chip memory configured as 

FIFO, and other controllers that orchestrate the movement of data and the communication with 

the off-chip memory within the FPGA. For a 28×28 systolic array implemented on Kin-

texK325T FPGA, the Xilinx’s Vivado synthesis tool estimated a maximum circuit operation 

frequency of 166MHz and a power consumption of 7W which translates to a throughput of 

260G-ops/s at a power efficiency of 37 G-ops/s/W. 

• Scalable Architectures 

Clément, et al. present a runtime reconfigurable dataflow processor for vision called 

NeuFlow in [61] and [62]. This work is similar the work presented in [58], however, in [58] 

the architecture is presented as a data flow grid. This architecture is designed to process ho-

mogeneous streams of data in parallel, achieve high throughput and provide flexible processing 

framework. [63] and [61] architectures have the same components that perform the same tasks 

to some extent other than the latter architecture describes the used DMA as a smart DMA 

because it complements the work of the control unit. While consuming 10W when imple-

mented on a Virtex-6 FPGA running at 200MHz, the system segmenting 20 categories on 500 

× 375 frames at 12 FPS.   
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Paolo, et al. [64] propose a flexible and scalable architectural for CNNs acceleration 

based on the tightly-coupled cluster architectural paradigm followed by the PULP platform 

[65] that has been configured to suit the needs of CNNs acceleration and adapted to be imple-

mented on a Zynq device. The accelerator presented in [64] is based on the cooperation be-

tween a set of software cores (SW) and a parallel convolution engine that communicate via a 

tightly coupled L1 shared scratchpad. The system is connected through an AXI cluster bus to 

a Zynq Processing System that hosts a dual core ARM-Cortex A9 and communicates with 

external storage. A shared tightly coupled data memory (TCDM) is implemented using dual-

port block RAM primitives. This allows simultaneous access to the memory banks by the com-

putation engine, the DMA, and the SW. Memory banks are partitioned into two sets, one ded-

icated to input features and one dedicated to output features. Each bank is partitioned into at 

least two sections to allow overlapping of computation and communication. The computation 

engine design is fully parametric and can be scaled in terms of a big set of parameters. Imple-

mented on a Xilinx ZC-706 board running at 100MHz, the system delivers theoretical peak 

performance up to 80 GMAC/s, i.e. 160 G-ops/s at two ops per MA for 5×5 filters. 

DLAU, a scalable deep learning accelerator unit presented by Chao, et al [66] to speed 

up the kernel computational parts of deep learning algorithms. Authors utilize the tile tech-

niques to partition the large-scale input data, FIFO buffers to prevent data loss, pipelines to 

minimize memory transfer operations, and computing units reuse to implement the large-size 

neural networks. Implemented on XC7Z020 running at 200MHz, DLAU was able to achieve 

19.2x and 36.1x speedups for 64×64 and 256×256 network sizes, respectively compared to 

Intel Core2 running at 2.3GHz, when DianNao [42] can achieve 117x for the 256×256 network. 

The accelerator consumes 234mW and the whole system consumes 1814mW.  



www.manaraa.com

66 

Related Hardware Implementations of CNNs 

The main drawback of accelerating a CNN on an FPGA platform is that developers 

have essentially to rebuild the CNN model from scratch, and that takes a long development 

round. A few implementations tackled this issue, for example, in [67] authors propose an 

FPGA framework that is based on Caffe framework [68] to map CNN layers to an FPGA 

platform. The framework mainly uses Xilinx FPGA SDAccel environment [69] to map CNN 

layers and generate the bit-stream file. To optimize the computational component, they in-

crease the number of hardware units used to process a problem which in turns increase hard-

ware resources linearly, making it an inefficient optimization method.  

HLS tools such as OpenCL-Framework are a good alternative path away from low-

level programming; however, such tools are not highly optimized to take full advantage of the 

available parallelism in CNNs and those tools abstract away a lot of the design details. In [70] 

authors use the OpenCL framework to implement the AlexNet model on P395-D8 board. Al-

tera OpenCL SDK is used for compilation of OpenCL code to RTL to run on the FPGA accel-

erator. Running at 120MH the P395-D8 board achieved a peak performance of 72.4 GOPS; 

however, in our implementation of the same network, the system achieved peak performance 

of 611.54GOPs having the system running at 200MHz.  

HDL automatic generation for convolutional neural networks was previously proposed. 

In [71], authors use high-level descriptive language to generate a Verilog HDL code for CNN 

models, where they specify the details of layers and generate each layer independently. Once 

all layers are generated, they combine all of them to have a complete accelerator. The generated 

code is generic for all different models scale wise. They did not state anywhere in their work 

that they store parameters on-chip or hard code them, meaning that they use an external 

memory source for small-scale models which is not an efficient way to handle parameters for 
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such models. Their accelerator can achieve a performance of 222.1 GOP/s for AlexNet, while 

ours can achieve 611.52 GOP/s for the same model. Further, our VHDL generation tool is 

designed to generate an optimized code/CNN implementation that is modular, scalable, recon-

figurable, highly parallel, and fully pipelined.  

In [72] authors avoid loading parameters from an external memory source by storing 

them in an on-chip memory. In their implementation, they adopt a parallel-serial style to in-

crease the throughput; however, this strategy does not take full advantage of the available par-

allelism in the CNN as well as different layers do not work concurrently. They implemented a 

small-scale neural network that performs digits recognition on Xilinx XC7Z045. Under 172 

MHZ, their system is capable of processing about 70K 28×28 images per second. In our im-

plementation, we avoid using any sort of memory storage to store parameters, rather we hard 

code them as constants to maximize the utilization of the available hardware resources and 

reduce the use of the expensive ones, and get over memory bandwidth limitations. Our system 

is capable of processing up to 125K 28×28 Images/s, having the system running at 200 MHZ. 

Optimizing computation in CNNs can significantly improve the overall performance 

of a CNN model. Many attempts have been made to optimize computation through various 

parallelism approaches. Authors in [57] and [73] use parallelism only in convolution opera-

tions and output feature maps. This work implements three types of parallelism: parallelism in 

convolution operations, parallelism in input feature maps, and parallelism in output feature 

maps. In addition, the design in this work is implemented in a pipelined style where all layers 

work concurrently that helped increase the throughput of the system, achieving a peak perfor-

mance of 611.54 GOPs for AlexNet model.  
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CHAPTER 7.    HARDWARE ARCHITECTURE 

This chapter explains the details of the hardware architecture pieces which were used 

for small and large-scale models. The chapter is divided into two sections, the first section 

covers the details of small-scale architectures and the other section shows the architecture used 

to implement AlexNet model. 

Small-Scale Models Architecture 

Small scale models can be implemented on different FPGA boards based on their size 

and number of parameters they comprise. In this section we will target the Zedboard for our 

previously used example in CHAPTER 5.   , VGTEST model. 

System Architecture Overview  

  

DRAM PROCESSING UNIT UART

ACCELERATOR (PL)

AXI-LITE (CONTROL SIGNALS)

AXI-STREAM (DATA-STREAM)

DMA

 

Figure 7.1 Top-level architecture of the system  
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Figure 7.1 describes the top-level architecture of the proposed system using the Zed-

board. DRAM is used to store images of the target dataset; processing unit is used to perform 

classification operation and that is to avoid using expensive and complex FPGA operations 

like natural logarithm; AXI-Stream is used to increase the throughput of the system through 

continuous pixel streaming into the accelerator. Direct memory access(DMA) controller is 

used to manage communication or data transfer between the accelerator and the DRAM; Fi-

nally, the accelerator represents the developed core for the acceleration process. The details of 

the accelerator will be broken down into modules and presented in the following subsection. 

Accelerator Architecture  

The accelerator can be viewed as a combination of four different modules; top level 

interface module, used to interface with the AXI-stream; convolution module, used to perform 

computation and handle convolutional layers; pooling module, used to perform maximum or 

average pooling operation in pooling layers; and matrix multiplication module, used to perform 

matrix multiplication and handle fully-connected layers.  

• Convolution Module Architecture  

Convolutional layers account for most of the operations in the CNN, thus it is necessary 

to optimize the computational engine through maximizing parallelism and simplifying the 

computational operations. We designed a hardware architecture that takes advantage of the 

three parallelism techniques we mentioned in Generic Parallelization Exploration. The process 

in convolutional layers begins by streaming multiple or single vectors of data, then using a 

sliding window, we achieve the first parallelism technique through multiplying the input-data 

(receptive region) covered by the sliding-window (filter) parameters in a single clock cycle. 

To achieve the second technique of parallelism, each sliding window with its MACC opera-

tions is considered as a one processing element (PE) and the number of PEs is equal to the 
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number of input data vectors. The last parallelism technique is achieved through extracting 

multiple feature maps at the same time, where that is also achieved through the parallel PEs.  

The complete process of a convolutional layer can be summarized as follows; First, 

stream pixels and perform convolution operation for multiple input data vectors; Second, add 

up the values of each filter (window) together, then add up all the input data vectors together 

in a pipelined style to form one data vector; Third, extract multiple feature maps from the 

unified data vector; Fourth, add biases to their corresponding extracted feature map; Fifth and 

last, apply ReLU activation function to all extracted feature maps, where it is basically a zero-

thresholding operation.  

PE1

PE2

PEn

Input Stream

Weights Kernel -1

Weights Kernel -2

Reg Reg Reg

Reg Reg Reg

RegRegReg

DIN

FIFO

FIFO

WEIGHTS MULTIPLICTION

ADDER-TREE

Weights Kernel -2

Weights Kernel -n

M ULTIPL ICTI ON

M ULTIPL ICTI ON

M ULTIPL ICTI ON

IN M 2-O M1- Kernel

IN M 2-O M2- Kernel

IN M 2-O Mn- Kernel

 

Figure 7.2 Processing element details in a convolutional layer for a 3 x 3 filter 

Figure 7.2 shows the hardware architecture details of a processing element in a convo-

lutional layer for an example filter of size 3×3. PEs are scalable to different filter sizes. INM2-

OM1-kernel, is the kernel that includes the weights to extract sub-feature map 1 of feature map 

1 from input map 2. 
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The architecture details of a complete convolutional layer are shown in Figure 7.3. The 

difference between the first convolutional layer and later convolutional layers is that the first 

layer might only have one processing element if the image is of grayscale type.  

PE1

PE2

PEn

INPUT-STREAM

IN-MAPS
ADDER-TREE

vector 1

vector 2

vector N

# of PEs = # of IN- MAPs

OUT-MAP1

OUT-MAP2

OUT-MAPn

# of OUT-MAPs =  # Extracted Feature maps

Bias
1

Bias
2

Bias
N

+

+

+

ReLU
Intermediate 

Reg

Intermediate 

Reg

Intermediate 

Reg

 

Figure 7.3 Hardware details of a complete convolutional layer 

 

• Pooling Module Architecture 

The architecture of pooling layer is the simplest. In fact, in this layer only one operation 

is performed, which is max or average pooling. Pooling layer takes up intermediate values 

stored in buffers from the previous layer and applies a sliding window that has the size of the 

pooling filter and a step size based on the specified stride value. This sliding window is similar 

to the one used in the convolutional layer, except that the performed operation is max pooling 

and no weights multiplication is performed. Results from max-pool are stored in buffers that 

feed the next layer. The max pooling operation is performed for all incoming feature maps in 

one clock cycle. Architecture details of the pooling layer are described in Figure 7.4. 
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PE1

PE2

PEn

DIN
Reg Reg

Reg Reg

DIN

FIFO

<

<

<

Reg

Reg

Reg

Stride 
Enable

 

Figure 7.4 Max pooling architecture using filter size of 2×2 

• Matrix Multiplication (Fully-Connected Layer) Architecture 

The architecture of the FC layer is similar to the convolutional module architecture 

except that the convolution operation is replaced with matrix multiplication operation. The 

process starts by streaming data from the previous layer’s intermediate buffers into the fully-

connected layer. For the first FC layer, the sliding window has the size of the input feature map 

and that is to extract features for each neuron in the input feature map. For later FC layers, no 

sliding windows are used, and multiplication is applied directly. The architecture of a fully-

connected layer is shown in Figure 7.5. The processing elements represent matrix multipliers.  
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PE2

PEn

INPUT-STREAM

IN-MAPS
ADDER-TREE

vector 1

vector 2

vector N

# of PEs = # of IN- MAPs

OUT-MAP1
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# of OUT-MAPs =  # Extracted Feature maps

Bias
1

Bias
2
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+

+

+

ReLU
Intermediate 

Reg

Intermediate 

Reg

Intermediate 
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Figure 7.5 Hardware architecture of fully-connected layer  
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Large Scale CNN Architecture 

The goal intended from implementing a large-scale CNN is to demonstrate the adapta-

bility and capability of VGT. The tool generates VHDL code for the network layers; however, 

the top-level module is not covered yet by the tool. As a case study, we implemented the large 

scale AlexNet CNN [8]. 

The architecture of a large-scale CNN is slightly different from small-scale CNN ar-

chitecture. Since we cannot hardcode parameters nor store them on an on-chip memory be-

cause of their massive size, we are ought to store them on an external memory source. This in 

fact, introduces a lot of complication in the process as we need to take into account memory 

accesses for loading parameters from the external memory source. The architecture of the con-

volutional and pooling layers is similar to those of small-scale CNNs, but the fully-connected 

layer architecture is different. The FC layer as we said earlier, accounts for most of the network 

parameters, hence we cannot simply perform a huge matrix multiplication operation.  

As a matter of fact, the architecture of the fully-connected layer of AlexNet is adopted 

from the work in [31]. Authors use the same parallelism techniques we use for small-scale 

models and have similar approaches to what we have done for small scale networks, hence we 

followed their implementation of the large scale AlexNet.  

The amount of parallelism in AlexNet is massive and is subject to the available hard-

ware resources on FPGA. Authors in [31], introduced a parallelism space exploration approach 

to balance between parallelism utilization and the available hardware resources available on 

FPGA. Further, they proposed a decent methodology for optimizing memory bandwidth to 

achieve high performance. For more details, we recommend reading that paper.   
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Since the main difference between large and small-scale architectures lies within the 

fully-connected layer architecture, we will only describe the architecture of the fully connected 

layer. The first FC in AlexNet requires about 398 million multiplication operations. The 

weights matrix is of size ((6×6×256) × 4096) and the input vector is of size (1 × 9216). To 

perform such a massive matrix multiplication operation, the input vector should be divided 

into small and equal vectors (1 × 𝑋𝑛
𝑖 ), and weights matrix should also be divided into similar 

( 𝑋𝑛
𝑖𝑗

 × 1) vectors. The multiplication operation is performed as shown in Equation 7.1. Results 

from the small vector multiplication are stored in a temporary output. When all multiplications 

for a complete input vector are done, final results are generated and stored in designated out-

puts: 𝑌1  →  𝑌𝑗 . The multiplication operation is illustrated in Figure 7.6. 

∑ ∑ (1 ×  𝑋𝑛
𝑖 ) ∗ ( 𝑋𝑛

𝑖𝑗
 × 1)

𝑘=
9216

𝑛

𝑖=1
=  𝑌𝑖

𝑗𝑚=4096
𝑗=1   ( 7.1) 

Input Vector  1 x 9216

1 × 𝑋𝑛
𝑖  

4096

9
1

2
6

1
 ×

 𝑋
𝑛 𝑖𝑗 

×   

Output Vector  1 x 4096

𝑌𝑖
𝑗 

𝑌𝑖
1 

 

Figure 7.6 Fully-connected layer architecture of a large-scale CNN, ( Adapted from [31] )  
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CHAPTER 8.    RESULTS AND EVALUATION 

To demonstrate the functionality and scalability of VGT, we implemented two bench-

marked models. This chapter illustrates the implementation details of LeNet-5 [18], and 

AlexNet [8]. As for AlexNet implementation as stated earlier in CHAPTER 7.   , we adopted 

the strategy proposed in [31] in managing memory bandwidth and desired degree of parallel-

ism.  

Implemented Models Details 

AlexNet implementation is not a fully-automated implementation, where the tool was 

only responsible for generating VHDL code for the layers without handling the storage of 

weights and biases. In AlexNet implementation, 16-bit fixed point precision is used for weights 

representation, and 8-bit and 16-bit fixed point precisions are used in LeNet-5 implementation. 

LeNet-5 Model 

LeNet-5 model comprises three convolutional layers, two pooling layers, and one fully 

connected layer. The number of parameters for the entire model is only ~1.25x times the pa-

rameters required for the first convolutional layer in AlexNet; however, this small model is 

good enough to perform digit recognition with decent accuracy. 

Table V LeNet-5 model configuration 

Layer Dimensions 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 Feature Maps Parameters 

Input Image 28 × 28 × 1  - - 

CONV 1 24 × 24 × 1 5 × 5 6 156 

POOL 1 12 × 12 × 1 2 × 2 - 0 

CONV 2  8 × 8 × 1 5 × 5 16 2416 

POOL 2  4 × 4 × 1 2 × 2 - 0 

CONV 3 1 × 1 × 120 - 120 30840 

FC 2 1 × 1 × 84 - 84 10164 

Total - - - 43576 
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Table V shows the details of LeNet-5 model; the operations performed in each layer, 

and the number of parameters each layer accounts for. The number of parameters shown in 

this table is different from what is reported in [18], where we consider input images of size 

28×28 by which later feature maps sizes are changed. Further, we do not follow their strategy 

for extracting feature maps for C3, where we establish all connections. Although establishing 

all connections accounts for more parameters, but it actually improves accuracy and general-

izes the model to be more parameterizable and similar to other generic CNN models. This 

indeed, puts away any special extra functions to be implemented for this single model. 

Since the number of parameters in LeNet-5 is very small compared to AlexNet, we 

managed to have the parameters hard-coded. This strategy helped significantly improve the 

overall throughput of the system as we do not have to deal with external memory bottleneck 

for loading parameters, and it improved the overall utilization of hardware resources.  

 
Figure 8.1 Original LeNet-5 architecture [18] 

 
Figure 8.2 Implemented LeNet-5 architecture, ( Adapted from [18] )  
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AlexNet Model 

AlexNet model is one of the most prominent benchmarked large-scale CNN models. 

This model was proposed back in 2012 when it had won ImageNet Challenge (ILSVRC) 2012, 

achieving a top-5 accuracy of 84.7%, performing image classification of colored images of 

size 224x224 to 1000 different classes. Reported by the authors of AlexNet, the model takes 

between 5~6 days to be trained on two GTX580 3GB GPUs. This shows how large the model 

is, where it comprises about 60 million parameters. The model consists of five convolutional 

layers some of which are followed by max-pooling, and three fully-connected layers.  

Hardcoding 60 million parameters is impractical because of the huge size those param-

eters account for, hence those parameters are stored in an external memory source. Table VI 

shows the details of AlexNet architecture, where Layer is the layer name, INFs and OUTFs are 

the input and output feature maps, Featuresize  is the size of a feature map, Filtersize is the size 

of filter that is used in the convolution operation, and Stride is the shifting stride of the used 

filer during the convolution operation. 

Table VI AlexNet architecture details 

 

Layer INFs OUTFs Featuresize   Filtersize Stride Parameters  

Input Image 3  224 × 224   - 

Convolution 1 96 96 55 × 55 11 × 11 4 34944 

Pooling 1 96  27 × 27 3 × 3 2 - 

Convolution 2 256 256 27 × 27 5 × 5 1 614656 

Pooling 2 256  27 × 27 3 × 3 2 - 

Convolution 3 256 384 13 × 13 3 × 3 1 885120 

Convolution 4 384 384 13 × 13 3 × 3 1 1327488 

Convolution 5 384 256 13x13 3 × 3 1 884992 

Pooling 5 256  6 × 6 3 × 3 2 - 

Fully-connected 6 4096 4096 1 × 1 -- -- 37752832 

Fully-connected 7 4096 4096 1 × 1 -- -- 16781312 

Fully-connected 8 1000 1000 1 × 1 -- -- 4097000 
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The number of parameters of FC layers can be calculated as shown in Equation 8.1 

𝐹𝐶𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = weights + biases → 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 × 𝐼𝑁𝑚𝑎𝑝 ×  𝑂𝑈𝑇𝑚𝑎𝑝𝑠 +  𝑂𝑈𝑇𝑚𝑎𝑝𝑠  =

 62 × 256 ×  4096 +  4096 = 37752832    ( 8.1) 

Equation 8.1 can also be used to calculate the number of parameters for convolutional 

layers by replacing 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 with 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒
2
, so the total number of parameters for the first 

convolutional layer = 112 × 3 ×  96 +  96 = 34944 parameter. 

 

Figure 8.3 AlexNet architecture: ImageNet 2012 winning CNN model. ( Adapted from [31] ) 

Results 

The evaluation of the implemented models is based on simulation, synthesis and post 

implementation results obtained from ISE [74] and Vivado [37] tools .  

LeNet-5 Model 

We simulated LeNet-5 model using ISE and Vivado simulators, using test weights and 

biases. Simulation results of LeNet-5 are shown in Figure 8.4. Results matched up in behav-

ioral, synthesis, and post implementation simulations. We verified the correctness of the ob-

tained results from simulation by implementing the network in MATLAB.  
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Figure 8.4 Post-implementation simulation results of LeNet-5 using 16-bit precision 

Hardcoding model parameters as constants does not only help overcome memory bot-

tleneck, but it also can optimize the use of DSP blocks. To test this hypothesis, we implemented 

LeNet-5 model with 8-bit precision using two different versions of Xilinx synthesis tools, hav-

ing them running at their default synthesis/implementation design goal.  

We found out that Vivado optimized out all DSP48 blocks, where no blocks were re-

ported in the post-implementation report, while ISE reported a total DSP48 block utilization 

of 89% with a total reduction of 33% in other hardware resources compared to Vivado utiliza-

tion report. Table VII shows utilized resources of LeNet-5 using 8-bit precision. 

Table VII Hardware resource utilization of 8-bit LeNet-5 implementation on Zynq xc7z020 

Resources Slice Registers LUTS DSP 

Available  
106400 53200 220 

Resources 

Layers/Tools Vivado ISE Vivado ISE Vivado ISE 

Conv-1 (C1) 1448 

13839 

953 

10015 

0 

196 

Pool-2 (S2) 1516 747 0 

Conv-1 (C1) 6892 4905 0 

Pool-4 (S4) 1844 1057 0 

Conv-1 (C1) 5731 6112 0 

FC6 (F6) 1738 2661 0 

Total 19169 16435 0 

Utilization 18.02% 13.01% 30.89% 18.83% 0% 89.09% 
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Table VIII shows hardware resource utilization when implementing LeNet-5 on Virtex-

7 (7vx690tffg1157). For both used bit representations, ISE tool used DSP48 blocks, and the 

used DSP48 blocks are 57% more than those were used in the Zedboard despite the fact that 

the used model and parameter representation are exactly the same in both cases.  

Table VIII Resource utilization of LeNet-5 implemented on Virtex-7 using 8 and 16-bit 

 

In conclusion, hardware utilization in the case of hardcoded constants can be optimized 

to target particular hardware resources by specifying special synthesis directives to synthesis 

tools. In this implementation, ISE synthesis optimization targeted performance, where the syn-

thesis report showed a maximum operational frequency of 387MHz when implementing 8-bit 

LeNet-5 on the Zedboard and 434MHz when implemented on Virtex-7. The variation in speed 

here is because more DSP48 blocks were used in Virtex-7.  

On the other hand, Vivado synthesis optimization targeted area, where we have seen 

less hardware resources used for both implementations, 8-bit and 16-bit LeNet-5, yet this was 

on the account of having the design running at maximum operational frequency of 200MHz, 

when the same design ran at maximum speed of 434MHz through ISE.  

We evaluated LeNet-5 implementation by comparing it with other related work and a 

software implementation of our own. Evaluation is shown in Table IX.  

 

 

Resources 
Slice Registers 

(FF) 
LUTS DSP48 Blocks 

Available 866400 433200 3600 

Precision 8-bit 16-bit 8-bit 16-bit 8-bit 16-bit 

Used 13501 27530 9778 17162 309 553 

Utilization 1.56% 3.18% 2.26% 3.96% 8.58% 15.36% 
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Table IX LeNet-5 implementation in comparison to other related  

Implementa-

tion 

Platform Frequency 

(MHZ) 

FPS 

(28×28) 

Speedup 

Software Intel® Core™ i7-6700HQ 2600 2.5K baseline 

[75] Xilinx XC7Z045 172 70K 28x 

This work Virtex7 200 125K 50x 

AlexNet Model 

AlexNet was implemented on Virtex-7 only due to its large size. Table X Shows syn-

thesis results of hardware resource utilization of AlexNet, different implementations of 

AlexNet model in comparison to this implementation are illustrated in Table XI , and Table III 

shows related implementations that are based on HDL generation.  

Table X Resources Utilization by AlexNet model. 

Resources (VirtexVC709) FF LUTS DSP BRAM 

Available 866400 433200 3600 2940 

used 269845 287461 2070 2023 

Utilization 31.14% 66.35% 57.5% 68.8% 

Table XI Comparison with other implementations of AlexNet model 

 Platform Frequency (MHZ) GOP/s Processing time (ms) 

[76] Altera Stratix-V 120  136.5 20.1 

[31] Virtex7- VX690T 156  565.9 2.56 

[77] Stratix-V GXA7 100 114.5 >12.5 

[47] Virtex7-VX485T 100 61.62 21.61 

This work Virtex7- VX690T 200  611.5 2.41 

Table XII Comparison with other automatic HDL generation implementations 

 Platform Frequency (MHZ) GOP/s / GMACs Model 

[67] Virtex7- VX690T 200 45.8 GOP/s AlexNet 

[75] Virtex 7-VX485T 150 16.42 GMAC/s LeNet-5 

[71] Virtex7- VX690T 100 222.1 GOP/s AlexNet 

This work Virtex7- VX690T 200  611.5 GOP/s AlexNet 
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CHAPTER 9.    CONCLUSION AND FUTURE WORK  

In this work, we designed and implemented an FPGA-based VHDL generation tool 

(VGT) for Convolutional Neural Networks implementation. The tool was developed in Java, 

and is designed to facilitate the process of hardware acceleration of Convolutional Neural Net-

works models using FPGAs through parametrizing the implementation of those models.  

The tool offers a graphical user-interface through which users can on the fly configure 

their target CNN model by providing model specifications. VGT reduces development time 

needed to implement a CNN significantly, overcomes barriers introduced by the complexity 

of development in hardware descriptive languages, and mitigates under-optimization caused 

by high level synthesis tools. The tool is optimized to generate a modular, scalable, reconfig-

urable, and parallel implementation of CNN models. 

We demonstrated our VHDL generation tool by implementing a small-scale “LeNet-

5” CNN model and a large-scale one “AlexNet” on virtex-7. Having the FPGA running at 200 

MHz, the system is capable of processing up to 125K images of size 28×28 for the small-scale 

model and achieved a peak performance of 611.52 GOP/s for the large scale one.  

Small-scale CNN models utilize what we call “hardcoded constants approach” in han-

dling CNN parameters “weights and biases”. This indeed, contributed to improving the overall 

performance of implemented models, and offered more flexibility with synthesis tool imple-

mentation in terms of area and performance optimization strategies. In one hand, we were able 

to optimize all DSP blocks out, where multiplication operations where replaced by shift regis-

ter operations, for implementations ran on optimized area strategy. On the hand, DSP blocks 

we fully utilized for implementations ran on optimized performance strategy.  
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Thus far, the proposed tool does not provide smart automated decisions for used FPGA 

platform and CNN model. Hence, we aim to extend this work through incorporating a design 

space exploration methodology which will mainly handle matching provided CNN model and 

desired implementation strategy with the adequate FPGA platform. In other words, if a model 

is constrained by area, power, or performance, then the tool will generate an implementation 

that will meet those design constrains and choose the target FPGA platform that best suits the 

application. Moreover, we aim to support more benchmarked CNN models and other neural 

networks algorithms such as recurrent neural networks. Lastly, we might extend the generated 

implementation output form to include C or C++ languages besides VHDL to allow users, in 

exceptional cases, advance their implementation to meet their special desired implementation 

needs/constrains without having to hustle with hardware descriptive languages, i.e. VHDL.  
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