
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

VHDL auto-generation tool for optimized
hardware acceleration of convolutional neural
networks on FPGA (VGT)
Muhammad K A Hamdan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Hamdan, Muhammad K A, "VHDL auto-generation tool for optimized hardware acceleration of convolutional neural networks on
FPGA (VGT)" (2018). Graduate Theses and Dissertations. 16368.
https://lib.dr.iastate.edu/etd/16368

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16368?utm_source=lib.dr.iastate.edu%2Fetd%2F16368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

VHDL auto-generation tool for optimized hardware acceleration of convolutional

neural networks on FPGA (VGT)

by

Muhammad K.A. Hamdan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

Major: Electrical and Computer Engineering

Program of Study Committee:

Diane T Rover, Major Professor

Phillip H. Jones

Mani Mina

The student author, whose presentation of the scholarship herein was approved by the

program of study committee, is solely responsible for the content of this thesis. The Grad-

uate College will ensure this thesis is globally accessible and will not permit alterations

after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright © Muhammad Hamdan, 2018. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my family, for your love and support

To my friends for your advice and good companionship

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

ACKNOWLEDGMENTS ... ix

ABSTRACT .. x

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. BACKGROUND ... 4
Brief Introduction to Machine learning ... 4

Supervised learning .. 5
Unsupervised learning .. 5

Neural Networks .. 5

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS AND FPGAs 7
Convolutional Neural Networks .. 7

Convolutional Layer ... 8
Non-linearity (Activation Function) ... 10

Normalization layer .. 10

Pooling layer... 11

Fully-Connected layer .. 11
Other Layers ... 12

Dropout layer: ... 12
Classification layer: ... 12

CNN Topologies .. 12

LNet-5-5 ... 13
AlexNet .. 13
Network-in-Network(NIN) .. 14

VGG-Net .. 14
GoogLeNet-5 .. 14
ResNet .. 15

Introduction to Field Programmable Gate Arrays ... 15
Field-Programmable Gate Arrays .. 15

• Programmable Logic ... 16

• Programmable Interconnect .. 16

• Programmable I/O ... 17

• Specialized programmable functional blocks ... 17
FPGAs Versus Other Hardware Platforms ... 17

• FPGAs versus General-Purpose Processors.. 17

• FPGAs versus ASICs .. 18

www.manaraa.com

iv

CHAPTER 4. ACCELERATOR DESIGN AND CNN IMPLEMENTATION 19

CNN Training ... 19

CNN Optimization ... 20
Parallelism within convolution, .. 20

CNN Implementation ... 21
Hardware Accelerators Design .. 22

Potential Hardware Platforms for Accelerators Design ... 22

• Central Processing Units (CPUs) .. 22

• Graphic Processing Units (GPUs) .. 23

• Application-Specific Integrated Circuits (ASICs) 23

• Field-Programmable Gate Arrays (FPGAs).. 24
Achieving High Performance with FPGA-Based Computing 25

• Method 1, use an algorithm optimal for FPGAs ... 25

• Method 2, use a computing mode appropriate for FPGAs 25

• Method 3, use appropriate FPGA structures ... 25

• Method 4, living with Amdahl’s law .. 26

• Method 5, hide latency of independent functions 26

• Method 6, use rate-matching to remove bottlenecks 26

• Method 7, take advantage of FPGA-specific hardware 26

• Method 8, use appropriate arithmetic precision .. 27

• Method 9, use appropriate arithmetic mode ... 27

• Method 10, minimize use of high-cost arithmetic operations..................... 27

• Method 11, create families of applications, not point solutions 28

• Method 12, scale application for maximal use of FPGA hardware 28

Hardware Description Language and High-Level Synthesis....................................... 29

Hardware Description Language .. 29
High-Level Synthesis ... 30

CHAPTER 5. VHDL GENERATION TOOL .. 33
Tool Overview ... 34
VGT Tool Flow ... 35

• Configuration process: .. 36

• Parameters Inclusion process: ... 36

VHDL Generation Example Using VGT .. 38
Model Setup ... 38
Model Configuration .. 40

• Platform and Network Selection ... 40

• Model Configuration Block .. 41

• Parameters Inclusion Block .. 43
External Files/Dependencies .. 45

• Configuration File Syntax ... 45

• Configuration File Syntax ... 46
VHDL code Generation Process .. 47

• Architecture constructor.. 47

• Graphical User Interface ... 47

www.manaraa.com

v

• Parameterization Library Manager ... 48

• VHDL code generator and storage ... 48
Generated VHDL Details ... 50

CHAPTER 6. RELATED WORK .. 54
Survey on Hardware Implementations of CNNs ... 54

Custom Hardware Platform .. 55

GPU Platform ... 56
FPGA Platform ... 57

• Memory System Optimization .. 57

Generic Memory System Optimization ... 57
Resource Utilization .. 59

• Computation Engine Optimization ... 61

Parallelization Exploration .. 61

• Scalable Architectures .. 64

Related Hardware Implementations of CNNs ... 66

CHAPTER 7. HARDWARE ARCHITECTURE ... 68

Small-Scale Models Architecture .. 68
System Architecture Overview .. 68
Accelerator Architecture .. 69

• Convolution Module Architecture .. 69

• Pooling Module Architecture .. 71

• Matrix Multiplication (Fully-Connected Layer) Architecture 72

Large Scale CNN Architecture .. 73

CHAPTER 8. RESULTS AND EVALUATION ... 75

Implemented Models Details ... 75
LeNet-5 Model ... 75

AlexNet Model ... 77
Results ... 78

LeNet-5 Model ... 78

AlexNet Model ... 81

CHAPTER 9. CONCLUSION AND FUTURE WORK .. 82

REFERENCES ... 84

www.manaraa.com

vi

LIST OF FIGURES

Page

Figure 3.1 Left: A 3-layer feed-forward Neural Network. Right: A CNN layer that

arranges its neurons in three dimensions (width, height, depth). The 3D

input volume is transformed into a 3D output volume of neuron

activations in every layer [15]. ... 8

Figure 3.2 Right: A mathematical representation of the convolution operation

followed by a nonlinearity function. Left: Input value of size 7×7×1

with padding of 1, a stride of 2, and receptive field of 3×3 is convolved

with a filter (In Red) of size 3 [15] ... 8

Figure 3.3 Convolution of a 5×5×3 filter with 32×32×3 input image [15] 9

Figure 3.4 Activation Functions: ReLU, Tanh, Sigmoid .. 10

Figure 3.5 Average and maximum pooling output for 2 x 2 filter with stride of two

[15] ... 11

Figure 3.6 Dropout representation .. 12

Figure 3.7 Internal Architecture of FPGA [26] .. 16

Figure 5.1 VGT: Proposed Solution ... 34

Figure 5.2 VHDL Generation Tool Flow ... 35

Figure 5.3 CNN Model Implementation Process .. 37

Figure 5.4 VGTEST, example CNN model .. 38

Figure 5.5 Platform and network style selection .. 40

Figure 5.6 Manual CNN model configuration .. 41

Figure 5.7 Loading configuration file of a pre-configured CNN model........................... 41

Figure 5.8 Incorrect configuration due to wrong stride size used in the 4th layer 42

Figure 5.9 Successful configuration check ... 43

Figure 5.10 Parameters inclusion block for the example model 44

Figure 5.11 Successful parameters inclusion .. 44

file:///G:/School/Master/Iowa%20State%20University/School%20Years/Second%20Year/2017%20Fall/699/Thesis/thesis-prefinal-spaces.docx%23_Toc505523090

www.manaraa.com

vii

Figure 5.12 Generated VHDL files for VGTEST model .. 45

Figure 5.13 Configuration file syntax of the example model ... 45

Figure 5.14 Random parameters syntax file of the example model 46

Figure 5.15 VHDL code generation process... 49

Figure 5.16 Actual generated VHDL code of header section ... 50

Figure 5.17 Snapshot generic module from model entity ... 51

Figure 5.18 Snapshot of signals declaration ... 51

Figure 5.19 Snapshot of weights and biases section ... 52

Figure 5.20 Snapshot of internal module instantiation ... 52

Figure 7.1 Top-level architecture of the system ... 68

Figure 7.2 Processing element details in a convolutional layer for a 3 x 3 filter 70

Figure 7.3 Hardware details of a complete convolutional layer 71

Figure 7.4 Max pooling architecture using filter size of 2×2 ... 72

Figure 7.5 Hardware architecture of fully-connected layer .. 72

Figure 7.6 Fully-connected layer architecture of a large-scale CNN, (Adapted from

[32]) ... 74

Figure 8.1 Original LeNet-5 architecture [19] .. 76

Figure 8.2 Implemented LeNet-5 architecture, (Adapted from [19]) 76

Figure 8.3 AlexNet architecture: ImageNet 2012 winning CNN model. (Adapted

from [32]) .. 78

Figure 8.4 Post-implementation simulation results of LeNet-5 using 16-bit precision 79

www.manaraa.com

viii

LIST OF TABLES

Page

Table I List of different CNN topologies that participated in the ImageNet challenge 13

Table II VGTEST CNN model summary. .. 40

Table III Supported Configurations .. 42

Table IV Supported operations by the combinational process for CNN layers. 53

Table V LeNet-5 model configuration .. 75

Table VI AlexNet architecture details .. 77

Table VII Hardware resource utilization of 8-bit LeNet-5 implementation on Zynq

xc7z020 ... 79

Table VIII Resource utilization of LeNet-5 implemented on Virtex-7 using 8 and

16-bit ... 80

Table IX LeNet-5 implementation in comparison to other related 81

Table X Resources Utilization by AlexNet model. .. 81

Table XI Comparison with other implementations of AlexNet model 81

Table XII Comparison with other automatic HDL generation implementations 81

www.manaraa.com

ix

ACKNOWLEDGMENTS

I would like to thank my committee chair, Prof. Diane T. Rover, and my committee

members, Dr. Phillip Jones, and Dr. Mani Mina for their guidance and support throughout

the course of this research.

I also would like to thank my friend and coworker, Murad Qasaimeh for his help,

advice, and thoughtful discussions with me. In addition, I would like to thank all friends,

colleagues, the department faculty and staff for making my time at Iowa State University

a wonderful experience.

www.manaraa.com

x

ABSTRACT

Convolutional Neural Network (CNN), a popular machine learning algorithm, has

been proven as a highly accurate and effective algorithm that has been used in a variety of

applications such as handwriting digit recognition, visual recognition, and image classifi-

cation. State-of-the-art CNNs are computationally intensive, yet their parallel and modular

nature make platforms like Field Programmable Gate Arrays (FPGAs) well suited for the

acceleration process. Typically, Convolutional Neural Networks take a very long develop-

ment round to be implemented or accelerated using FPGAs, hence in this thesis, we pro-

pose a VHDL generation tool (VGT), which through VHDL code (CNN architecture) can

be on the fly generated for different CNN models (benchmarked and hand-tuned). The

generated code or architecture is highly optimized, where it is modular, highly parallel,

reconfigurable, scalable, fully pipelined, and adaptive to different CNN models. We

demonstrate the automatic VHDL generation tool and its adaptability by implementing a

small-scale CNN model “LeNet-5” and a large-scale one “AlexNet”. The generated code

for the small-scale model does not incorporate any external memory management for the

CNN parameters, whereas parameters are automatically hard-coded as constants unlike

how it is typically done for large-scale models. On a Xilinx Virtex-7 running at 200 MHZ,

the system is capable of processing up to 125k 28×28 Images per second for LeNet-5 and

achieved a peak performance of 611.52 GOP/s for AlexNet.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Convolutional Neural Networks (CNNs), a type of neural networks and a prominent

machine learning algorithm, inspired by the visual cortex of the brain and a mathematical op-

eration called convolution, currently represent the most viable approach to image understand

ing. Indeed, CNNs have gained popularity not only in image and video classification

[1][2][3][4], but also in many other applications such as speech recognition [5][6], textual anal-

ysis [1][2], and visual object recognition and self-driving cars [7].

The idea of neural networks has been around since the 20s of the 19th century, yet the

latest generations of high-performance computing platforms have allowed the evolution of

CNNs. In the past couple of years, many CNN models such as LeNet-5, AlexNet, VGG, Goog-

leNet, and ResNet were presented. For example, AlexNet model [8] won ImageNet Large-

Scale Vision Recognition Challenge (ILS VRC) 2012, achieving a top-5 accuracy of 84.7%.

The exceptional performance of convolutional neural networks comes as a trade off to the

enormous computational cost they require, where a large CNN model requires over billion

operations per image. With the availability of powerful platforms like graphic processing units

(GPUs), this level of performance can be reached, yet due to the high-power consumption of

GPUs it is infeasible to embed such solutions into small portable systems. Different platforms

have been considered for efficient implementations of CNNs, and FPGAs were investigated as

the most promising one [9]. Interestingly, FPGAs seem to well-fit the job because they are

reconfigurable, take advantage of the inherent parallelism in CNNs, and power efficient.

www.manaraa.com

2

CNNs are known for their frequent data access, computation complexity, and very long

development round on FPGAs, hence an efficient implementation is required. In this thesis,

we present a VHDL generation tool that reduces time and effort in the process of implementing

CNNs on FPGAs. The tool allows users to easily configure a CNN model through a graphical

user-interface and generate a highly optimized VHDL code for it. The generated VHDL re-

flects a modular, highly parallel, scalable, reconfigurable, and fully-pipelined implementation

of the target CNN model. The key contributions of this work are listed as follows:

• A paper entitled “VHDL generator for a high performance Convolutional neural network

FPGA-based accelerator” is published out of this work.

• A VHDL generation tool that offers a highly optimized auto-generated implementation of

CNN models on FPGAs with the following features:

✓ Support for configuration through a GUI and/or external configuration file.

✓ Support for different CNN models in extremely short development round.

✓ The tool is optimized to ensure flexibility, and adaptability with CNN models.

✓ Support for test-bench for validation and testing purposes

• A High-performance FPGA-based accelerator that is highly parallel, scalable, reconfigura-

ble, and operates in a fully-pipelined style.

• The VHDL generation tool was tested on two benchmarked models (LeNet-5 and AlexNet)

and other hand-tuned models. The system can process up to 125K Images/s for LeNet-5

and achieved peak performance of 611.52 GOP/s for the AlexNet model

• An executable of the VHDL generator is made available at:

HTTPS://GITHUB.COM/MHAMDAN91/CNN_VHDL_GENERATOR

https://github.com/MHAMDAN91/CNN_VHDL_GENERATOR

www.manaraa.com

3

The rest of this thesis is organized as follows, CHAPTER 2. introduces general con-

cepts about machine learning and neural networks. In CHAPTER 3. , a thorough background

about Convolutional Neural Networks and their topologies is presented, and a brief introduc-

tion to FPGAs is given. CHAPTER 4. describes accelerators design and CNNs implementa-

tion. In CHAPTER 5. , we present the main contribution of this work, the VHDL generation

tool. CHAPTER 6. presents CNN accelerators from previous work as well as related work

to HDL code generation for CNNs. CHAPTER 7. illustrates hardware architecture and im-

plementation details. CHAPTER 8. shows the evaluation of this work and obtained results.

Finally, conclusion and future work are presented in CHAPTER 9.

www.manaraa.com

4

CHAPTER 2. BACKGROUND

This chapter introduces a brief background about machine learning and its types of

learning, then covers some concepts about artificial neural networks

Brief Introduction to Machine learning

Machine Learning is an artificial intelligence approach, by which machines “Comput-

ers” learn in a similar way to how humans learn. Machine learning addresses how program

systems can automatically learn and improve with experience. Learning in this context is not

learning by heart but recognizing complex patterns and make intelligent decisions based on

data. The difficulty lies in the fact that the set of all possible decisions given all possible inputs

is too complex to describe. To tackle this problem the field of machine learning develops al-

gorithms that discover knowledge from specific data and experience, based on sound statistical

and computational principles.

The field of machine learning integrates many distinct approaches such as probability

theory, logic, combinatorial optimization, search, statistics, reinforcement learning, and con-

trol theory. The developed methods are at the basis of many applications, ranging from vision

to language processing, forecasting, pattern recognition, games, data mining, expert systems,

and robotics [10]. Machine learning is usually divided into two main types: predictive (unsu-

pervised) or supervised learning [11]. There is a third type of machine learning that is not

widely used known as reinforcement learning. The latter type is useful for learning how to act

when given occasional reward or punishment signals.

www.manaraa.com

5

Supervised learning

In supervised training, inputs and outputs are provided, where inputs are processed by

the network, and its resulting outputs are compared against desired outputs. Errors are then

propagated back through the system causing the system to adjust weights that control the net-

work. This process occurs over and over as the weights are continually tweaked to minimize

the error. The dataset that enable training is called training set. During the training of a network

the same set of data is processed many times as the connection weights are ever refined.

Unsupervised learning

In unsupervised training, the network is provided with inputs but not with desired out-

puts. The system itself must then decide what features it will use to group the input data. This

is often referred to as adaptation. Unsupervised learning is usually used for clustering purposes.

Neural Networks

The development of neural networks dates back to the early 19th century. ANNs models

are inspired by biological neural networks based on the functionality of neurons. Usually, neu-

ral networks consist of many artificial neurons that are interconnected with each other. The

neurons are arranged in such a way to form a feed-forward neural network. Neurons are the

basic building block of a neural network, where a neuron receives a number of input signals 𝑥𝑖

from other neurons and these input signals are multiplied with weights 𝑊𝑖 to simulate the syn-

aptic interaction at the dendrites. The weighted inputs are summed up, biased with a value

typically equals 1, and fed into a non-linear activation function that produces the neuron’s

output signal.

𝑂𝑈𝑇𝑛𝑒𝑢𝑟𝑜𝑛
𝑖 = ∑ 𝐼𝑁𝑃𝑈𝑇𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 +

𝐾𝑖𝑛𝑝𝑢𝑡

𝑗=1
𝐵𝑖𝑎𝑠𝑖 (2.1)

www.manaraa.com

6

Why neural networks and not regular computer programming? The idea behind neural

networks is that they do not require an explicit description of a problem neither need to be

programmed to perform a particular task. The neural network adapts itself during a training

phase, based on examples of similar problems. When a network has completed its training

phase, the network is able to relate the problem data to the solutions, inputs to outputs, and

able to offer a feasible solution to a new problem.

Before a neural network is deployed, the network must be trained on a particular set of

examples, where parameters (weights and biases) in the neural network are not manually cho-

sen, but learned during this training phase. As mentioned in supervised learning, a network is

provided with a set of labeled training examples. The training starts with small and randomly

initialized weights. Inputs are multiplied with weights and fed to a non-linearity function that

produce the output to be compared with the labeled examples using a loss function that

measures the difference between the true output (labeled examples) and the output of the non-

linearity function. Error is minimized by optimizing the values of weights. Using the Back-

propagation Algorithm [4] , outputs are propagated all the way back in the network. This is

typically solved via Stochastic Gradient Descent (SGD) [12].

Stochastic gradient descent algorithm is perhaps the most commonly used optimization

procedure for training deep neural networks [13], in which the network weights are moved

along the negative of the gradient of the performance function. The term backpropagation re-

fers to the manner in which the gradient is computed for nonlinear multilayer networks. The

algorithm propagates the error, that is computed as the difference between the output of the

forward pass and the expect output, back throughout the network to adjust the weights values

in order to minimize the error.

www.manaraa.com

7

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS AND FPGAs

This chapter sheds the light on Convolutional Neural Networks, their structure and to-

pologies. Further, the design and training of CNNs are illustrated, and a concise introduction

to field programmable gate arrays (FPGAs) is provided.

Convolutional Neural Networks

Convolutional Neural Networks are a class of feed-forward neural networks that are

suited for operations on 2-dimensional data such as images. CNNs are similar to ordinary neu-

ral networks, where they are made up of neurons that have weights and biases. Neurons in

CNNs receive inputs, perform a dot product that is followed by a non-linearity, and then applies

loss function on the classification layer. The major difference between CNNs and regular feed-

forward NNs is that CNNs deal better with 2D input data and that is why they are mainly used

in image classification.

CNNs usually start with a convolutional layer, where it takes input images and decom-

pose them into different feature maps such as edges, lines, curves, etc. Multiple processes are

applied to the extracted feature maps throughout the entire network. Extracted feature maps

from the last layer (typically, a fully connected layer) are classified into output classes using a

classifier like SoftMax classifier [14]. A typical Convolutional Neural Network consists of a

number of convolutional and fully connected layers, where most of the operations are per-

formed; pooling layers that are used to avoid overfitting; a classification layer, to classify final

results into classes; and other as-needed layers. A layer in the CNN consists of 3D volumes of

neurons as shown in Figure 3.1 (width, height, and depth and the word depth refer to what is

called “Feature-maps or activation-maps” not the number of layers in the CNN).

www.manaraa.com

8

Figure 3.1 Left: A 3-layer feed-forward Neural Network. Right: A CNN layer that arranges

its neurons in three dimensions (width, height, depth). The 3D input volume is transformed

into a 3D output volume of neuron activations in every layer [15].

Convolutional Layer

The convolutional layer is considered as the main building block of a CNN, and it

comprises most of operations in a CNN model. The convolutional layer essentially performs a

mathematical operation called convolution that involves 3-dimensional multiply accumulate

(MACC) operations. Shown in Figure 3.2, a kernel/Filter (Filter values selection depends on

intended features, and input images should be divisible by 2 many times) of weights that is

multiplied by a set of inputs (receptive region), and the weighted inputs are summed together.

Figure 3.2 Right: A mathematical representation of the convolution operation followed by a

nonlinearity function. Left: Input value of size 7×7×1 with padding of 1, a stride of 2, and

receptive field of 3×3 is convolved with a filter (In Red) of size 3 [15]

A bias whose value usually one is added to the summed weighted inputs to ensure that neurons

fire. An activation function such as rectified linear unit (ReLU) is applied to the accumulated

sum to introduce nonlinearity and limit the output to a reasonable range. Results from the ac-

tivation function are traversed to corresponding neurons in the next layer.

www.manaraa.com

9

The computation of the spatial size of the output is shown in Equation 3.1

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =
(𝐼𝑛𝑝𝑢𝑡𝑤𝑖𝑑𝑡ℎ−𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒+2× 𝑃𝑎𝑑𝑑𝑖𝑛𝑔)

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1 (3.1)

Three hyperparameters control the size of the output: Depth, Stride, Zero-padding,

where the stride is the slide rate at which the filter slides (most common slide value is 1, where

the filter is moved one pixel to the right at a time), and zero-padding is a process that is applied

to the border of the input to help control the spatial size of the output and preserve the infor-

mation on the boarder.

In CNNs the total number of parameters (weights and biases) is less than regular feed-

forward networks, whereas not all neurons are connected to each other. The overall number of

parameters is reduced because local field receptors (local connectivity) is applied, where neu-

rons only connect to respective local field without the need to connect to all inputs (pixels in

an image or neurons in a feature map). The field receptor is shared among all neurons in the

next layer. For example, if there is N hidden layers and 5×5×3 receptor field, then the total

number of parameters equals (5×5×3×N) + (N biases). Figure 3.3 shows an input image

convolved with a filter (in green), producing a corresponding activation maps (in blue). The

other activation map (in green) is similarly was produced by a different filter with the same

size, but different filter values

Figure 3.3 Convolution of a 5×5×3 filter with 32×32×3 input image [15]

www.manaraa.com

10

Non-linearity (Activation Function)

Activation function is applied to each input pixel to ensure nonlinearity in the network

as well as to get rid of unnecessary information. Among the various activation functions, Sig-

moid, Tanh, and ReLU are the most commonly used activation functions. Sigmoid =
1

(1 + 𝑒−𝑥)
 ,

and Tanh = tanh(x) activation functions require a longer training time in CNNs [16], unlike

ReLU activation function which converges faster during training. Further, ReLU is simply

defined as a zero-thresholding operation ReLU = max (0, x). Figure 3.4 shows the different

types of activation functions.

Figure 3.4 Activation Functions: ReLU, Tanh, Sigmoid

Normalization layer

Normalization or Local Response Normalization (LRN) implements the lateral inhibi-

tion [16] by damping the responses that are uniformly large in any given local neighborhood.

Before sending the weighted inputs (outputs) of convolution to the nonlinearity, normalization

layer normalizes the outputs depending on the neighboring neurons to help bring inputs to

ReLU to a common scale. LRN layer was introduced in the AlexNet architecture [8], but are

less common in recent CNNs.

www.manaraa.com

11

Pooling layer

The importance of pooling layers comes to the fact that they prevent CNNs from over-

fitting [17]. Basically, spatial pooling is a form of nonlinear subsampling that is utilized to

reduce the feature dimensions as we go deeper in the network. There are multiple methods to

perform pooling and the most common ones are average and maximum pooling. In max pool-

ing a set of neurons are subsampled based on the size of a pooling filter, whereas the maximum

neuron value in that filter is passed to the corresponding neuron in the next layer and the rest

of neurons are dropped out. In average pooling the forwarded value to the corresponding neu-

ron in the next layer is the average of all neurons in the used filter as shown in Figure 3.5.

Figure 3.5 Average and maximum pooling output for 2 x 2 filter with stride of two [15]

Fully-Connected layer

The fully connected (FC) layer usually comes before classification layer and it com-

prises the highest number of parameters because every neuron in this layer is connected to all

neurons in the previous layer, and parameters are translated on the connections between those

neurons. Inputs in this layer are multiplied with corresponding weights, biases added respec-

tively, and nonlinearity is applied similarly like convolutional layers.

www.manaraa.com

12

Other Layers

Dropout layer: A method used to avoid overfitting in large CNNs. During training, this layer

randomly drops a selectable percentage of its connections in order to prevent the network from

learning very precise mappings, and force some redundancy to be built into the learned weights.

Figure 3.6 Dropout representation

Classification layer: This is last layer in a CNN and its main functionality is to classify the

final output from the preceding layer into specific classes. In this layer a classification function

such as SoftMax is used to perform the classification process. Basically, the SoftMax classifier

converts raw class scores 𝑧𝑖 of the nonlinearity in the preceding layer to a probability 𝑃𝑖 in the

range (0, 1) according to 𝑃𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑘
, to help bring the results to a common scale. The top

probabilities from SoftMax classifier are then compared with actual labels of the available

classes, hence evaluate the accuracy of the model.

CNN Topologies

Over the past couple of years many CNN topologies were introduced for their accuracy

and performance. Image classification is an interesting and considerably the hardest task in

computer vision, where the solver has to either label images, identify objects in images, or

www.manaraa.com

13

group images of the same characteristics in similar groups. This task seems to be solved effi-

ciently using Convolutional Neural Networks.

An image classification competition called the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) is held annually, where participants compete with their developed

CNN algorithms to classify images from ImageNet database. The ImageNet database consists

of more than 14 million images, where each labeled with a corresponding class. The training

set of ILSVRC comprises about 1.2 million images under 1000 different classes. Table I shows

a summary for some of CNN algorithms that participated in ImageNet Challenge.

Table I List of different CNN topologies that participated in the ImageNet challenge

LNet-5-5

Among the early CNN models LeNet-5 was proposed by Yann LeCun et al [18] in

1998 to perform digit recognition on images contained digits. The model contained only two

convolutional layers and two pooling ones along with two full connected layers. We demon-

strated out VHDL generation tool by implementing this model.

AlexNet

AlexNet model is the winner of the ILSVRC challenge in 2012 and it was developed

by Alex Krizhevsky et al [8]. The architecture comprises a total of 5 convolutional layer with

three pooling layers and two full connected layers. AlexNet has about 60 million parameters

and performs approximately 1.1 billion MACC operations for one forward pass. The SoftMax

 Convolution

layers

Parameters

[millions]

Activations

[millions]

ImageNet

Top-5 error

AlexNet 5 60 2.4 15.4%

VGG-Net 16 138 29 11.2%

GoogLeNet-5 22 5 10.4 6.7%

ResNet-2015 50 25 46.9 3.6%

www.manaraa.com

14

classifier and dropout technique are adopted in this network, and the LRN layer was proposed

in this architecture as well. This model achieved a top-5 error rate of 15.4%.

Network-in-Network(NIN)

Developed by Min Lin et al. [19] in 2013, NIN architecture consists of small multilayer

perceptron working as convolutional filters, that slid over the respective input. In this network

average pooling is adopted in the classifier instead of the fully-connected layers, hence the

network has a smaller number of parameters. This model can be trained on ImageNet dataset

and can reach the level of Alex-Net accuracy [20].

VGG-Net

The Visual geometry group (VGG) model designed by Karen Simonyan and Andrew

Zisserman [21] was the winner of the ImageNet challenge in 2014. The deepest proposed

model contained 19 convolutional layers, that is about 4x deep as AlexNet. Convolutional lay-

ers exclusively used 3 × 3 convolution filters and 2 × 2 max-pooling ones. This network has a

very high number of parameters of about 138 million and a single forward pass requires ap-

proximately 16 billion MACC operations.

GoogLeNet-5

As the trend about CNN models was to develop deeper networks, Christian Szegedy et

al [22] proposed a 22-layer deep CNN model called GoogLeNet-5, which won ImageNet chal-

lenge in 2015 with a top-5 error rate of 6.7%. The model has only 1.2 million parameters that

is about 0.86% of VGG parameters. The massive reduction of parameters resulted into more

complex architecture that employs what so-called Inception modules. An inception module is

basically a network-in-network sub architecture that uses a 1 × 1 convolutional layer to reduce

the number of input channels.

www.manaraa.com

15

ResNet

Proposed by kaiming He et al [23] from Microsoft research, the residual network (Res-

Net) with a depth of 152 won the ImageNet challenge by achieving a top-5 error rate of 3.6%.

Speaking of 152 layers means a hard training problem. To get over this problem, researchers

included detours around each batch of subsequent convolutional layers. This topology can be

viewed as 𝑦 = 𝐹(𝑥) + 𝑥 where the network has to learn a residual function F(x) only.

Introduction to Field Programmable Gate Arrays

This section gives a brief introduction to Field-Programmable Gate Arrays (FPGAs),

then highlights characteristics, strengths, and weaknesses of FPGAs in comparison with other

hardware platforms such as central processing units (CPUs), graphics processing units (GPUs),

and application specific integrated circuits (ASICs).

Field-Programmable Gate Arrays

Field Programmable Gate Arrays are prefabricated semiconductor devices that consist

of 2D arrays of configurable logic blocks (CLBs, or logic slices), which are connected via

programmable logic. Interconnect resembles a network of wire bundles that run horizontally

and vertically between the logic blocks with switchboxes (switches matrices) at each intersec-

tion between the horizontal and vertical bundles. The logic blocks, the fixed-function units as

well as the interconnect are programmed electronically by writing a configuration bitstream

into the device to implement any digital design. The configuration is typically held in SRAM

memory cells and the FPGAs can be reprogrammed many times [24].

The first static memory-based (SRAM) FPGA was proposed by Wahlstrom in 1967.

This architecture allowed for both logic and interconnection configuration using a stream of

configuration bits. The first commercial modern-era FPGA was introduced by Xilinx in 1984.

It contained arrays of configurable logic blocks and inputs/outputs (I/Os). Modern high-end

www.manaraa.com

16

FPGA generations feature hundreds of thousands of configurable logic-blocks, and they in-

clude an abundance of hardened functional units that enable fast and efficient implementations

of common functions.

Figure 3.7 Internal Architecture of FPGA [25]

• Programmable Logic

Programmable logic blocks in FPGA are used to provide the basic computation and

storage elements used in digital systems. A typical basic logic element contains some form of

programmable combinational logic, a flip-flop or latch, and some fast carry logic in order to

reduce area and delay cost. Additionally, modern FPGAs contain a heterogeneous mixture of

different blocks some of which can be used for specific functions such as dedicated memory

blocks, multipliers (DPS blocks), or multiplexers [25].

• Programmable Interconnect

Connections between logic blocks and I/O blocks are provided through programmable

routing in FPGA. The interconnect consists of pass transistors, tri-state buffers, and multiplex-

ers that achieve the desired connection. Generally, multiplexers and pass transistors are used

within a logic cluster to connect the logic elements together while all three are used for more

global routing structures. There are several global routing structures that have been used in

FPGAs such as island-style, cellular, bus-based, and registered architectures.

www.manaraa.com

17

• Programmable I/O

Logic blocks and routing architectures are interfaced with external components of an

FPGA through Input/output pads or programmable I/O. The I/O pad and supporting surround-

ing logic circuitry form important components that are called I/O cells. Due to variation in

supply voltage and reference voltage standards, the design of I/O programmable blocks is kind

of challenging. The choice of supported standard is one of the most important decisions in I/O

architecture design. Supporting large number of standards can increase the silicon area re-

quired for I/O cells significantly [25].

• Specialized programmable functional blocks

FPGA architecture has been developed over the course of time through adding more

specialized programmable functional blocks such as embedded memory (Block RAMs), arith-

metic logic (ALUs), multipliers (MUXs), digital signal processors (DSP48), and embedded

microprocessors. This made FPGAs heterogeneous platforms.

FPGAs Versus Other Hardware Platforms

• FPGAs versus General-Purpose Processors

 The advantage of FPGA-based systems over traditional processing units-based sys-

tems such as desktop computers, smartphones, and GPUs, is the availability of freely program-

mable general-purpose logic blocks. FPGAs can be arranged into high performance specialized

accelerators for very specific tasks, resulting in improved processing speed, higher throughput.

Compared to GPUs, FPGAs are considered to be a much power-efficient devices where they

fit better for mobile device-based applications. These advantages come at the price of increased

complexity and reduced agility during development time, where designers need to carefully

take into consideration the available hardware resources and the efficient mapping of target

www.manaraa.com

18

algorithms onto the FPGA architecture. Further, FPGAs exceed the computing power of digital

signal processors (DSPs) by breaking the paradigm of sequential execution and accomplishing

more per clock cycle where they take full advantage of hardware parallelism. Controlling in-

puts and outputs (I/O) at the hardware level provides faster response time and specialized func-

tionality to closely match application requirements. FPGAs usually do not use operating sys-

tems that actually minimize reliability concerns with true parallel execution and deterministic

hardware that is dedicated to every task [26].

• FPGAs versus ASICs

Application-Specific Integrated Circuits (ASICs) are custom-tailored semiconductor

devices. Unlike FPGAs, ASICs do not have any area or timing overhead that could be caused

by configuration logic and generic interconnects, thus resulting in the fastest, most energy-

efficient, and smallest systems. However, the sophisticated fabrication processes for ASICs

results in a very lengthy and complicated development round and very high nonrecurring en-

gineering upfront costs that demand a first-time-right design methodology and very extensive

design verification. Therefore, ASICs are mostly suited for very high-volume, cost-sensitive

applications where the non-recurring engineering and fabrication costs can be shared between

a large number of devices. FPGAs with their reprogrammability are better suited for prototyp-

ing and short development cycles, where concepts can be tested and verified in hardware with-

out going through the long fabrication process of custom ASIC design. FPGA chips are field-

upgradable and do not require the time and expense involved with ASIC redesign. Digital

communication protocols, for example, have specifications that can change over time, and

ASIC-based interfaces may cause maintenance and forward-compatibility challenges. Being

reconfigurable, FPGAs can keep up with future modifications that might be necessary [25][27].

www.manaraa.com

19

CHAPTER 4. ACCELERATOR DESIGN AND CNN IMPLEMENTATION

Convolutional Neural Networks go through multiple phases before they get imple-

mented in hardware to perform particular tasks for a particular application. In the previous

section we illustrated various CNN topologies, where all of them are essentially based on the

same design concepts of a typical CNN structure. The variations between the aforementioned

topologies are driven by parameters that control the behavior of the network. This chapter will

introduce CNN training, optimization, and Implementation.

CNN Training

For a Convolutional Neural Network to perform image classification of a particular

dataset, the network has to be trained to perform classification for that dataset. CNNs are typ-

ically trained using backpropagation algorithm [4]. This is usually solved via Stochastic Gra-

dient Descent (SGD) [12]. SGD is perhaps the most commonly used optimization procedure

for training deep neural networks [13], in which the network weights are moved along the

negative of the gradient of the performance function. The term backpropagation refers to the

manner in which the gradient is computed for nonlinear multilayer networks. The algorithm

propagates error, that is computed as the difference between the output of forward pass and

expected output all the way back throughout the network to adjust weights values in order to

minimize the error. Usually, CNN models are developed using libraries provided by well-

known frameworks such as TensorFlow, Keras, or Caffe. Training is mostly done using GPUs

as it is relatively easy to implement CNNs on a GPU, yet GPUs provide a very high training

speed although a large CNN such as AlexNet [8] could take up to a week to be trained.

For a quick and easy start with CNN training, TensorFlow [28] is recommended to

perform the training process, where a thorough guide on how to develop and train CNNs can

www.manaraa.com

20

be found on TensorFlow website. TensorFlow offers different libraries for CNN training on

GPUs or CPUs. Training a CNN model is relatively straightforward, where the model can be

written in high-level language like python and then be trained using TensorFlow libraries.

CNN Optimization

CNN is a naturally parallel algorithm and to take full advantage of this natural phe-

nomena, is it best to exploit the available parallelism as much as needed for the target applica-

tion. Parallelism in a CNN can be explained as follows:

Parallelism within convolution, the convolution of a matrix 𝑛 × 𝑛 using 𝑚 × 𝑚 filter can

be computed concurrently in parallel in one clock cycle; Parallelism within pooling, pool-

ing operation can be parallelized by subsampling all of the individual submatrices at the same

time; Parallelism within output feature maps, extracted features maps are totally independ-

ent of each other, hence all of them can be computed in parallel. In other words, if we are

looking at X features in an image then it is possible to run X parallel processes to extract

those features; Parallelism within input feature maps, incoming feature maps from previ-

ous layers can be processed in parallel as they can be combined to produce one single output.

Another optimization methodology that can be taken into consideration is limiting data

precision. Lower precision can save a lot of hardware resources, hence an efficient reduction

in model precision considering meeting application requirements can achieve a huge optimi-

zation. In [29] authors studied the effect of limited precision data representation and computa-

tion on neural network training. Within the context of low-precision fixed-point computations,

they observed the rounding scheme to play a crucial role in determining the network’s behavior

during training. Their results show that deep networks can be trained using only 16-bit fixed-

point number representation when using stochastic rounding, and incurred little to no degrada-

www.manaraa.com

21

tion in the classification accuracy. They also demonstrated an energy-efficient hardware accel-

erator that implements low-precision fixed-point arithmetic with stochastic rounding. Other

works such as [30], [31], and [32] adopted even smaller precisions and gained decent results.

CNN Implementation

Convolutional Neural Networks can be realized using the following platforms: General

purpose central processing units (GPCPUs), graphic processing units (GPUs), and FPGAs.

GPCPUs are the least favored platforms to run CNNs as they underutilize CNNs. Convolu-

tional Neural Networks are naturally parallel and their end-use applications are mostly image-

processing based applications, thus having a CPU in this equation does not fit at all as CPUs

are sequentially based processing elements that are not fit for image processing nor taking

advantage of the inherit parallelism in CNNs. While CPUs are not good for processing CNNs,

GPUs are the most favored platforms for training CNNs, and that is obviously because with

CNNs, GPUs process what they were actually created for. However, GPUs are not energy

efficient because of their high-power consumption.

Since CPUs do not take advantage of the available parallelism in a CNN and GPUs are

energy in-efficient devices, FPGAs manage to balance this equation. FPGAs are the type of

reconfigurable devices that can be designed to match particular design requirements. Usually

FPGAs are utilized as accelerators, where in the case of CNNs they seem to be an excellent fit

as they take advantage of the inherit parallelism in the CNN with a much lower power con-

sumption than that of GPUs.

Life cannot always be easy, and that is the case with FPGAs. To accelerate a CNN on

FPGA, designer/researcher has to go through a very long and hectic development process using

a hardware description language (HDL) such as VHDL or Verilog. Developing using HDL can

result in the most optimized implementation of an accelerator; however, some designers would

www.manaraa.com

22

prefer to trade off some performance in order to simplify implementation and reduce the de-

velopment time. High level synthesis tools like HLS-Vivado offer an alternative methodology

to implement hardware accelerators, where they replace hardware description languages with

high level languages such as C, C++ or SystemC. High level synthesis and hardware descrip-

tion language will be explained in details in a later section.

Hardware Accelerators Design

Hardware accelerator design is a process that is subject to the requirements of target

application and the end-implementation platform. Typically, embedded systems have a set of

requirements and subject to particular constrains such as timing, power, and physical size.

Those constrains require serious optimizations to be performed on algorithms prior to hardware

implementation. To meet design requirements under hardware constrains, target algorithm

must be investigated very well to identify the suitability for the acceleration process, the major

optimization components, and the appropriate hardware acceleration platform.

Potential Hardware Platforms for Accelerators Design

Our target platform for our target algorithm implementation is FPGA; nevertheless, in

this subsection we are providing a complementary introduction to an early brief one we men-

tioned in 0 on potential hardware platforms for accelerator design.

• Central Processing Units (CPUs)

 CPUs are the most common processing elements that are found in electronic devices

such as personal computers, smartphones, tablets, playstations, Xboxes, and even cars like

Tesla model S. Most of these CPUs are called general-purpose CPUs, which means that they

are designed to perform any task, where they can be easily and flexibly reprogrammed using

software. GPCPUs offer decent performance on a wide range of computation workloads; how-

ever, CPUs are sequentially based computing devices, meaning that they underutilize parallel-

www.manaraa.com

23

based tasks. CPUs are not ideal for high-parallelism dependent problems such as image pro-

cessing, which is what we are doing in this work.

• Graphic Processing Units (GPUs)

 The name of this processing element speaks for what it actually does. GPUs are found

in nowadays personal computers and are dedicated to graphics related processing workloads.

Recently, GPUs were investigated as an acceleration platform for machine learning problems

and other general computing tasks. A high-end GPU such as NVIDIA TITAN XP contains

3840 floating-point processing cores that can run at a boost-frequency of 1.582 GHz, offering

about 547.7 GB/s memory bandwidth with memory speed of 11.4 Gbps. TITAN XP can com-

pute up to 11 TFLOP/s, but that comes at the cost of high power consumption which peaks at

250 W. Such very high-power consumption processor is not suitable for power constrained

embedded devices. Further, with GPUs, software execution model is followed and structured

around executing tasks in parallel on independent compute units. As such, the goal in devel-

oping deep learning techniques for GPUs is to adapt algorithms to follow this model, where

computation is done in parallel and data interdependence is ensured. Hence, GPUs are not the

optimal platform for our target algorithm.

• Application-Specific Integrated Circuits (ASICs)

 When it comes to meeting system requirements, ASICs are the ideal solution, where

they can achieve the highest performance and energy efficiency. However, ASICs are less

suitable for irregular computation and dynamic algorithms that evolve with time, since they do

not provide any reconfiguration once fabricated. CNN algorithm is an evolving algorithm and

there is no fixed model that is considered as a representative model. Implementing a complete

CNN on an ASIC is neither efficient nor effective, but implementing parts of a CNN is a much

www.manaraa.com

24

better option. Convolutional layers are very computationally expensive, and accelerating some

fixed modules using ASIC technology might be efficient. An example of efficient ASIC-based

implementation of parts of a CNN is neuromorphic integrated circuits that use analog elec-

tronic circuits to mimic neurons and neural networks on custom-designed ICs [33]. Overall,

for a dynamically changing CNN that requires reconfiguration, a seldom ASIC implementation

is not preferred.

• Field-Programmable Gate Arrays (FPGAs)

 While it is best to adapt algorithms to the parallel nature of the GPUs, FPGA architec-

ture is tailored for the application, where custom processing engines can be built using the

programmable logic blocks to meet the algorithm needs. In other words, there is less emphasis

on adapting algorithms when it comes to developing machine learning techniques for FPGAs.

This allows more freedom to explore algorithm level optimizations. The performance of FPGA

design can be further increased by utilizing fixed-point or half- point precision data formats.

Optimizations and techniques that require many complex low-level hardware control opera-

tions cannot be easily implemented in high-level software languages, thus is it more attractive

to consider FPGA implementation. Further, in addition to the adaptiveness of FPGA imple-

mentation, FPGAs are reconfigurable and flexible that offer a wide scope of CNN models to

be implemented on the same chip without spending any further design costs as it is the case in

ASICs. Thus far, FPGA is the most suitable platform for our algorithm, but the downside of

FPGA-based implementations is that designers have to use hardware description languages to

perform their implementation which are not very friendly to program with and require decent

programming experience.

www.manaraa.com

25

Achieving High Performance with FPGA-Based Computing

Herbordt, Martin C., et al [34] designed 12 methods to avoid generating implementa-

tional heat while using FPGAs to accelerate high performance computing (HPC) applications.

In this section we summarize those methods and highlight the ones that fit our application.

• Method 1, use an algorithm optimal for FPGAs

 Prior to accelerating an algorithm using FPGA, it is necessary to check that this algo-

rithm is worthwhile accelerating on FPGA and match the reconfigurable and parallel nature

the FPGA can offer. Typically, the optimal algorithm for FPGA acceleration differs from that

for serial computer when creating high performance computing FPGA applications.

• Method 2, use a computing mode appropriate for FPGAs

 When talking about computing mode, it is referred to the differences between compu-

tation in software and hardware. FPGA configurations might resemble high-level language

programs, they essentially specify hardware, not software. Meaning that good computing

modes for software are not necessarily good computing modes for hardware, whereas restruc-

turing an application can substantially improve its performance. For example, random access

and pointer-based data structures are merely staples of serial computing, they may yield poor

performance in FPGAs. Streaming, systolic, associative computing structures, and arrays of

fine-grained automata are more preferable.

• Method 3, use appropriate FPGA structures

FPGAs support various data structures, yet certain data structures such as stacks, trees,

and priority queues are ubiquitous in application programs, as are basic operations such as

search, reduction, and parallel prefix. The analogous structures and operations usually differ

from what is obtained by directly translating software structures into hardware.

www.manaraa.com

26

• Method 4, living with Amdahl’s law

 Amdahl’s law states that significant application speedup through an enhancement re-

quires most of the application to be enhanced, but this is difficult to achieve sometimes espe-

cially with existing high-performance computing code.

• Method 5, hide latency of independent functions

latency hiding can contribute to achieving high performance in parallel applications,

especially the latency introduced by the overlap between computation and communication. In

FPGA implementations, rather than allocating tasks to processors that must communicate with

one another, latency hiding lays out functions on the same chip to operate in parallel.

• Method 6, use rate-matching to remove bottlenecks

 Multi-processor implementations offer some flexibility in partitioning by function or

data, but on FPGA functions are laid out on the chip, meaning that function-level parallelism

is already built in. This implies pipelining not only within but also across functions. Further,

rate-matching can also be found across computational power offered in a design and the I/O

bound on target FPGA, thus it is better to match I/O with desired parallelism to avoid perform-

ing unutilized parallelism.

• Method 7, take advantage of FPGA-specific hardware

FPGAs are often viewed as homogenous substrates that can be configured into arbitrary

logic. Nowadays FPGAs include, DSP modules, on-chip memories, and other processing ele-

ments. Those processing elements can be utilized to perform specific tasks to result in an op-

timized implementation and a better utilization of FPGA resources. For example, the Xilinx

www.manaraa.com

27

VP100 has 400 independently addressable, 32-bit, and quad-ported BRAMs; it achieves a sus-

tained bandwidth of 20 terabytes per second at capacity. Using this bandwidth greatly facili-

tates high performance and is an outstanding asset of current generation FPGAs.

• Method 8, use appropriate arithmetic precision

 We talked about this in the previous section, where it is an excellent optimization tech-

nique to consider when using FPGAs for hardware implementation. High-end microprocessors

have 64-bit data paths, which in many applications are often overlooked as only a few bits of

precision are needed. In contrast with microprocessors where data paths are fixed, FPGAs en-

able configuration of data paths into arbitrary sizes, allowing a tradeoff between precision and

parallelism. An additional benefit of minimizing precision comes from shorter propagation

delays through narrower arithmetic units.

• Method 9, use appropriate arithmetic mode

 Microprocessors provide support for integers and floating point depending on multi-

media features; however, in DSP systems cost concerns often require DSPs to have only inte-

gers. Although software can emulate floating point when required, it is not preferred to use

floating point representation in FPGA because it is costly. Generally, it is rule of thumb to

avoid floating-point in FPGAs and replace them with fixed-point representation.

• Method 10, minimize use of high-cost arithmetic operations

The relative costs of arithmetic functions on FPGAs are different than on microproces-

sors. For example, FPGA integer multiplication is efficient compared to addition, while divi-

sion is orders-of-magnitude slower. It is highly recommended to replace costly arithmetic op-

erations with simple operations. Even if the costly operation like division is fully pipelined to

hide its latency, the cost remains high in chip area, especially if the logic must be replicated.

www.manaraa.com

28

On FPGA, implementing unused functions is not necessary; recovered area can be used to

increase parallelism. Thus, restructuring arithmetic with respect to an FPGA cost function can

substantially increase performance.

• Method 11, create families of applications, not point solutions

 High performance computing applications are often highly parameterized and complex

resulting in variations in applied algorithms as well as data format. While it is easy to support

these variation on object-oriented technology, it is far more difficult to implement in current

hardware description languages. But if those variation are implemented in HDL, it reduces

development cost over a larger number of uses, enables higher reuse of the design, and relies

less on skilled hardware designers for each application variation.

• Method 12, scale application for maximal use of FPGA hardware

 Parallelism is the most contributive component in increasing performance, yet part of

accelerator design consists of instantiating as many processing elements (PEs) as the FPGA’s

computing fabric will support. For example, automated sizing of complex arrays will become

increasingly important for porting applications among FPGA platforms, given the frequency

at which larger FPGAs become available.

Adopting the aforementioned methods in HPC application implementation is a neces-

sary step in order to achieve high performance and avoid underutilizing FPGAs. Not all meth-

ods are required to be adopted in every HPC application, rather choosing which methods to

adopt is dependent on the target application and FPGA platform. Since Convolutional Neural

Network can be parallelized, can be represented in different precisions, dynamic, parametriz-

able, scalable, computational intensive, memory dependent, and flexible it is highly recom-

mended to consider most of the aforementioned methods.

www.manaraa.com

29

In our implementation we took full advantage of the available parallelism in CNNs by

utilizing the possible parallelism according to the available hardware resources in order to op-

timally utilize the FPGA. Further, we used suitable structures for our implementation and ex-

ploited the heterogenous resources available on the FPGA. We fully-pipelined our design in

order to reduce worst slack time, i.e. hide latency. To consider appropriate arithmetic mode,

and precision, we used fixed point representation for parameters instead of floating-point and

bind that representation with appropriate precision that can reasonably meet desired accuracy.

In our implementation we tried to minimize the use of high-cost arithmetic operations. Overall,

our implementation is highly parallelized, fully-pipelined, reconfigurable, scalable, and highly

optimized.

Hardware Description Language and High-Level Synthesis

Hardware description language and high-level synthesis are very correlated techniques

as they share similar objectives that are achieved in different methodologies. Hardware de-

scription language and high-level synthesis are used to write code of algorithms that are in-

tended to be implemented on digital logic circuits such as FPGAs and ASICs.

Hardware Description Language

Hardware description Languages include VHDL, Verilog, SystemC and Handle-C. Be-

havioral, register transfer level and structural levels of description can be used inter-changea-

bly in these languages. VHDL and Verilog are matured as industry standards, while SystemC

is a C++ based library used for modeling system level behavior, where processes can be easily

modeled than in a more traditional HDL. Synthesis tools for SystemC are not as mature as

VHDL or Verilog synthesis products. Handel-C is a relatively new product in comparison to

VHDL or Verilog. Handel-C follows the Communicating Sequential Process (CSP) model.

www.manaraa.com

30

Handel-C requires the designer to explicitly delineate parallel processing blocks within a pro-

cess. It includes intrinsic for inter-process communication, as does SystemC 2.0 [25].

Register Transfer Level (RTL) is the description of hardware designs, where program-

mers specify their algorithm details using a number of parallel processes that operate on vectors

of binary signals and simple integer data types derived from them. These parallel processes are

driven by the rising and falling edges of a clock signal and they describe combinational logic,

basic arithmetic operations and registers. RTL descriptions are very close to the wires and logic

gates that are available in the underlying FPGA technology, and therefore the hardware that

results from RTL synthesis can be closely controlled. However, the process of transforming a

given algorithm into processes, logic blocks, and finite state machines on the register transfer

level is very long, tedious, and error-prone. Designers have to consider and make many design

decisions before attempting to write any code, whereas later changes are difficult and costly.

This in fact prevent iterative optimizations, demand a lot of intuition, experience and expert

knowledge from designers in order to have a fully optimized and functional implementation of

their target algorithm [24][35]. Hence, HDL development is not highly preferred by some re-

searchers as they lack the adequate HDL programming skillset.

High-Level Synthesis

In order to overcome the barriers introduced by development using HDL, decent re-

search has been conducted to increase the level of abstraction, reduce development round, and

simplify implementation. High-Level Synthesis (HLS) offer designers an alternative path to

implement algorithms. In HLS, a lot of implementation details are abstracted away and handled

by the HLS compiler, where it replaces the development using HDLs with high-level program-

ming languages such as C, C++ or SystemC. The HLS compiler converts the code developed

using high-level programming languages (sequential description) into a concurrent hardware

www.manaraa.com

31

description, usually at the RTL level. HLS tools are grouped into five main categories: high-

level language-based frameworks, model-based frameworks, HDL-like languages, C-based

frameworks, and parallel computing frameworks (i.e. CUDA/OpenCL).

With HLS, designers can implement their designs through loops, arrays, floats, func-

tion calls, and other relevant arithmetic operations. The used loops, arrays, function calls, etc.

are converted into counters, multiplexers, multipliers, memories, computation cores and hand-

shake protocols. The compilation can be guided using scripted compiler directives or compiler

pragmas, which are meta-instructions interpreted directly by the HLS compiler [36][37]. Vi-

vado High-level Synthesis (Vivado HLS), offered by Xilinx, is the most common commercial

HLS tool.

Although HLS can provide faster development cycles, easier track for hardware imple-

mentation, and higher productivity; HLS tools do not provide sufficient optimization for a lot

of applications. Optimization in HLS is limited and defined by the directives and programs

that are embedded in the tool. As a matter of fact, HLS tools have been on the market for about

15 years now, yet designers still use hardware description languages for their FPGA designs.

The task of converting sequential, high-level software descriptions into fully optimized, paral-

lel hardware architectures is extremely complex. Although companies have invested hundreds

of millions of dollars and years of research into HLS [38][39], the results attained are still

highly dependent on the coding style and intricate design details. Because flaws and deficien-

cies in the compiler are only discovered during the design, the decision for HLS is associated

with a non-negligible risk [40]. Having said that the implementation of algorithms using HDLs

is tedious and complicated and optimization levels are not met using HLS, designers find them-

selves bound and have to trade off optimization for development round or vice versa.

www.manaraa.com

32

Convolutional Neural Network models vary in size, yet small models are still consid-

ered large to be implemented using HDL. Actually, it is impractical to implement large or deep

CNN models using HDL. Further, implementing deep CNN models using HLS might result in

underutilizing those models, hence not achieving the best possible performance. To overcome

the issue of long development round introduced by hardware description languages and un-

derutilization caused by the high abstraction introduced by High Level Synthesis, we present

a graphic user-interface based tool that is designed to automatically generate an optimized

VHDL code/implementation for Convolutional Neural Network models. The details of the

generation tool are explained in CHAPTER 5.

www.manaraa.com

33

CHAPTER 5. VHDL GENERATION TOOL

VHDL is one of the most common hardware description languages that is used to de-

velop hardware circuits at the register transfer level (RTL). In VHDL, designers typically spec-

ify their algorithm details using a number of parallel processes that describe some combina-

tional logic, and basic arithmetic operations and registers. These processes are driven by the

rising and falling edges of a clock signal and they operate on vectors of binary signals and

simple integer data types derived from them.

The process of transforming an algorithm into processes, logic blocks, and finite state

machines on the register transfer level is very long, tedious, and error-prone. As later changes

are difficult and costly in this process, designers have to consider and make many design de-

cisions before attempting to write any lines of code. Developing using HDL requires a decent

experience from the designer to reduce costly changes and ensure satisfying design results.

Further, the difficulty of development in HDL prevents iterative optimization, demands a lot

of intuition in order to have a fully optimized and functional implementation of algorithms.

Thus, development using HDL is not highly preferred by a lot of researchers especially those

who are not familiar with it. This actually makes FPGAs less attractive to accelerate an algo-

rithm. Further, CNN is a massive algorithm and implementing even a small size model like

LeNet-5 [18], could take months making the implementation of a large-scale model such as

AlexNet [8] impractical and infeasible.

www.manaraa.com

34

Tool Overview

Because it is impractical to implement CNN models especially large ones using HDL

from scratch, we present a VHDL generation tool (VGT) based on Java language, that offers a

parameterized implementation to achieve the following: First, overcome the barriers intro-

duced by high description languages and the limitations of HLS tools; Second, achieve high

performance and avoid underutilizing CNNs; Third and last, significantly shorten the develop-

ment round and provide easy and iterative optimization.

Figure 5.1 VGT: Proposed Solution

As shown in Figure 5.1, by passing only the configuration of a CNN model to VGT,

users can configure their CNN model and generate optimized VHDL code in a few seconds or

minutes depending on the size of the implemented model. As of now, VHDL is the supported

HDL language for realizing our implementations. The generated implementation is fully-pipe-

lined, each stage in the design is properly pipelined to hide latency; highly parallel, parallelism

is highly utilized corresponding to the available hardware resources; scalable and reconfigura-

ble, the implementation can easily be reconfigured either using VGT or directly using the gen-

erated VHDL code in accordance to desired changes; and modular, the generated code is bro-

ken down into multiple VHDL modules, whereas each module represents a particular layer in

the targeted CNN model.

CNN Model

VHDL Development Verification, functionality etc.

FPGA

VHDL Synthesis
tool

VGT

Bit stream

Model configuration

www.manaraa.com

35

VGT Tool Flow

Start

Model Verification
And Configuration

validation

End

Parameters
Inclusion

Yes

Model Specifications

Manual
Configuration

via GUI

Import Configuration
from a text file

Error Message
Fix incorrect
configuration

Fail Automatic
Configuration

storage

Want to Save
Configuration to

File?

Pass

No

Store Configuration

Yes

Model Meet Small
Scale Constrains?

Import Parameters from
a text file

Process Parameters Yes

Match Model
Configuration

No

Error Message

Generate
Test-bench?No

Yes Generate VHDL code

Store on Desk

Generate TB

Yes

No

Configuration

PROCESS

Parameters inclusion

PROCESS

Figure 5.2 VHDL Generation Tool Flow

www.manaraa.com

36

• Configuration process: In this process, users set model specifications through the tool’s

GUI (manual configuration) or through an external specification/configuration file. After

configuration stage, users are prompted to verify their CNN model. Indeed, there are a set

of rules that designers must adhere to when building a CNN model. In VGT, those rules

are embedded to check the validity of the configured model. Only upon successful valida-

tion, users can proceed to the second process, where they can handle the parameters

(weights and biases) of the target CNN model.

• Parameters Inclusion process: Upon successful configuration and validation of a CNN

model, users are prompted to provide the parameters of the target model. In this process,

users are asked to provide the representation of parameters as well as desired precision.

Further, users are asked to select what to do with the parameters depending on the size of

the target model. There are two options for handling model parameters, either to hardcode

them as part of the programmable logic and this applies to small sized models, or store

them on an external memory source and this is the case of large scale models. Upon select-

ing desired precision, parameters representation, and storage type, users are prompted to

include the parameters through the tool GUI. The tool run validation checks on imported

parameters to verify if they match up with the configured model and parameters represen-

tation. If the parameters file content violates any of the aforementioned rules, then the file

will not be imported/loaded to the tool and an information message will be displayed to the

user stating what errors should be fixed. Upon successful parameters inclusion, code gen-

eration module is enabled and users can generate VHDL code for their model as well as a

test-bench for simulation and validation purposes.

www.manaraa.com

37

Generated VHDL

Simulation Tool

Layers/VHDLTest Bench

Synthesis
Tool

FPGA

Bit Stream

Figure 5.3 CNN Model Implementation Process

Now that users have generated an optimized code for their implementation, they can

simulate the generated code using the provided test-bench to check the functionality of the

model as well as get a clue of the model’s performance. Also, users can skip simulation and

can directly synthesis their model and generate a bitstream to run on an FPGA as shown in

Figure 5.3.

For small scale models, users only need to put their target dataset images on an external

memory and establish communication with the accelerator without worrying about weights

and biases since they are hardcoded as part of the programmable logic. For large scale models,

users will need to store both parameters and target dataset images on an appropriate memory

source like external memory alone, or external and on chip memories. Currently the tool only

generates code for the CNN layers, and users have to take care of accelerator-memory com-

munication for loading/transferring images and parameters.

www.manaraa.com

38

VHDL Generation Example Using VGT

In this section we will give a thorough example on how to configure a simple CNN

model using VGT and generate VHDL code for it. The example CNN model (VGTEST) is

shown in Figure 5.4. The model is composed of two convolutional layers, two pooling layers,

one fully connected layer, and a classification layer of two classes, zero and one.

Model Setup

Figure 5.4 VGTEST, example CNN model

The configuration of the layers of our example model can be derived from Equation

5.1, where 𝑭𝑴𝒔𝒊𝒛𝒆 is the output feature map size, 𝑰𝑴𝑨𝑮𝑬𝑾𝑰𝑫𝑻𝑯 is the input image size, 𝑭𝒔𝒊𝒛𝒆

is the used filter size, Stride is the step size or shift of used filter over the input image, and

Padding is the process of filling the edges of non-square images with zeros to make it divisible

by used stride size.

𝐹𝑀𝑠𝑖𝑧𝑒 =
𝐼𝑀𝐴𝐺𝐸𝑊𝐼𝐷𝑇𝐻−𝐹𝑠𝑖𝑧𝑒+2×𝑃𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
 + 1 (5.1)

The target model is used to classify images of handwritten 0s and 1s. The input image

is grayscale and of size 28 × 28. In the first convolutional layer (Conv-1), three different fea-

ture maps are extracted through convolving the input image with kernels/filters of size 5 × 5.

The stride of the convolutional filter is one, no padding is applied to the input image, and the

applied activation function is rectified linear unit (ReLU). The output of the convolutional

www.manaraa.com

39

layer is passed to the first pooling layer (Pool-1), where maximum pooling (max-pool) function

is applied using a filter size 2 × 2. Basically, in max-pool the maximum neuron value in the

filter is passed to the corresponding neuron in the next layer and the rest of neurons are dropped

out as shown in the following Equation 5.2.

𝑃𝑎𝑠𝑠𝑒𝑑𝑛𝑒𝑢𝑟𝑜𝑛 → 𝑚𝑎𝑥(2𝑥, 𝑥, 0.5𝑥, 3𝑥) = 3𝑥 (5.2)

The second convolutional layer (Conv-2) takes in three input maps of size 12 × 12

and extracts 5 new feature maps for each input feature map. Conv-2 uses kernels of size 5 × 5

with a stride size of one and no padding, and ReLU is used as the activation function. The

output of Conv-2 is 5 feature maps of size 8 × 8. The second pooling layer (Pool-2) is similar

to the first one except that the input maps size is 8 × 8 and the output maps size is 4 × 4.

The Fully connected layer (FC) is similar to the convolutional one, but convolution is

replaced with matrix multiplication. The FC layer constitutes most of the parameters/connec-

tions in the network, which are more than the total number of parameters for both of the con-

volutional layers combined. In this layer, 8 feature maps are extracted for each incoming fea-

ture map from the second pooling layer. The total number of parameters in the FC layer can

be calculated as shown in Equation 5.3. The used activation function is ReLU.

𝐹𝐶𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠𝑒𝑠 → 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 × 𝐼𝑁𝑚𝑎𝑝 × 𝑂𝑈𝑇𝑚𝑎𝑝𝑠 + 𝑂𝑈𝑇𝑚𝑎𝑝𝑠 =

42 × 5 × 8 + 8 = 648. (5.3)

Equation 5.3 can also be used to calculate the number of parameters for convolutional

layers by replacing 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 with 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒
2
, so the total number of parameters for the first

and second convolutional layers would be 458. The last layer in the network is the classifica-

tion layer, which is basically represented by the SoftMax classifier with normalizes the output

of the fully connected layer into a probabilistic value between (0,1).

www.manaraa.com

40

Table II VGTEST CNN model summary.

Layer 𝑀𝐴𝑃𝐼𝑁−𝑆𝐼𝑍𝐸 𝑀𝐴𝑃𝑂𝑈𝑇−𝑆𝐼𝑍𝐸 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 Features Activation Stride Padding

Input image 28 × 28 24 × 24 - Grayscale - - -

Conv-1 24 × 24 12 × 12 5 3 ReLU 1 0

Pool-1 12 × 12 8 × 8 2 - Max-Pool 2 0

Conv-2 8 × 8 4 × 4 5 5 ReLU 1 0

Pool-2 4 × 4 1 × 1 2 - Max-Pool 2 0

FC 1 × 1 1 × 1 1 8 ReLU 1 0

Classification 1 × 1 1 × 1 - 2 SoftMax - -

Model Configuration

VGT comprises three configuration stages that a user has to go through to generate a

complete VHDL code for a CNN model. In this subsection, we will configure VGTEST model

using VGT’s graphical user-interface.

• Platform and Network Selection

In this block, users have to specify network style and target FPGA platform.

Figure 5.5 Platform and network style selection

www.manaraa.com

41

• Model Configuration Block

In this block, users can configure their target CNN network manually using VGT GUI

or load configuration of a pre-configured model from an external text file as shown in Figure

5.6 and Figure 5.7.

Figure 5.6 Manual CNN model configuration

Figure 5.7 Loading configuration file of a pre-configured CNN model

www.manaraa.com

42

Once configuration is complete, user is prompted to validate their configuration to en-

sure it meets standard CNN configuration. On unsuccessful validation check, a prompted mes-

sage is displayed to the user to inform them of what changes they have to make to fix errors.

Figure 5.8 Incorrect configuration due to wrong stride size used in the 4th layer

On a successful validation check, the user can export their configuration to an external

storage source in case they need to reuse the same configuration later. Load Weights and Biases

button gets enabled only on successful validation check, then users can proceed to next stage,

which is parameters inclusion. Supported configurations by the VGT are shown in Table III.

Table III Supported Configurations

Image Size User-defined

Output Classifier SoftMax

Filter Size User-defined

Feature maps User-defined

No. of Classes User-defined

Layer type Convolution, Pooling, FC, LRN

Activation Functions ReLU, Tanh, Sigmoid, Average

and Max Pool

www.manaraa.com

43

Figure 5.9 Successful configuration check

• Parameters Inclusion Block

In parameters inclusion block users are prompted to specify desired precision of target

model, parameters representation, and parameters storage type. The tool supports three repre-

sentations (decimal, hexadecimal, and binary) and the used representation in the generated

VHDL is fixed point. The tool supports different precisions from 1-bit up to 32-bits. If users

choose to the hardcoded-constants storage type, then parameters are consolidated within the

generated VHDL code as part of the programmable logic (PL).

Parameters must be formatted according to model configuration in order to have a suc-

cessful VHDL generation. In parameters file, users should specify layers name, list all kernels

used in each feature map along with their weights, specify biases value, and end each line with

a dollar sign. This will be explained in details in a later section. The sizes of weights and biases

are specified in the GUI, so for our example the tool is expecting binary representation of a

weight size of 5-bits and a bias size of 2-bits. If parameters file does not correspond to config-

uration, an error message will be displayed to the user highlighting the issue. Figure 5.10 illus-

trates the options given to incorporate parameters.

www.manaraa.com

44

Figure 5.10 Parameters inclusion block for the example model

Figure 5.11 Successful parameters inclusion

On an unsuccessful incorporation of parameters from an external file, users are

prompted with an error message stating what fixes they should do in order to proceed. On a

successful load as shown in Figure 5.11, “Generate VHDL files and Generate test-bench” but-

tons are enabled and users can now generate VHDL code for the targeted model.

www.manaraa.com

45

Figure 5.12 Generated VHDL files for VGTEST model

External Files/Dependencies

The VHDL generation process depends on two external files, one is required and the

other is optional. The optional file is the external configuration file and the required file is the

parameters file. The syntax for both files is explained in details in this subsection

• Configuration File Syntax

Figure 5.13 Configuration file syntax of the example model

N_Layer,5,
Image_Size,28,
Image_type,Grayscale,8, or Image_type,Colored,24,
N_Classes,2,
Classifier,SoftMax,
Convolution,3,5,0,1,ReLU, or Sigmoid, Tanh

Pooling,3,2,0,2,Max-Pool, or Avg-Pool
Convolution,5,5,0,1,ReLU,

Pooling,5,2,0,2,Max-Pool,
Fully-Connected,8,1,0,1,ReLU,

Features
map Filter

size
Padding Stride

www.manaraa.com

46

Figure 5.13 shows the configuration syntax for VGTEST, where N_Layer represents

the number of layers in the network; Image_Size is the input image dimension; Image_type

specifies the type of image if colored or grayscale and 8 represents the input data (pixels) width,

where 24 is for colored and 8 is for grayscale; N_classes represents the number of output clas-

ses and Classifier is the used classifier function; Convolution,2,2,0,2,Max pool respectively

represent layer name, number of output feature maps, filter size, padding, stride size, and used

activation function; the same syntax applies to pooling and fully connected layers.

• Configuration File Syntax

Figure 5.14 Random parameters syntax file of the example model

Convolution,1

Fiter_1,00001,00010,00011,00010,00001,00010,00011,00010,00001,00010,00011,00010,00001,0
0010,00011,00010,00001,00010,00011,00010,00001,00010,00011,00010,00010,01,$
Filter_1_2,00001,00010,00011, …….. ,00010,01,$

Filter_1_3,00001,00010,00011, …….. ,00010,01,$

Pooling,1

Convolution,2

Filter_1_1,00001,00010,00011, …….. , 00010,01,$

Filter_1_2,00001,00010,00011, …….. ,00010,00,$

Filter_1_3,00001,00010,00011 , …….. , 00010,00,$

Filter_2_1,00001,00010,00011 , …….. , 00010,01,$

…
…
…
Filter_5_3,00001,00010,00011 , …….. , 00010,01,$

Pooling,2

Fully-Connected,1

Filter_1_1,00101 , …….. , 00111,01$
Filter_1_2,00111 , …….. , 00111,00$

Filter_1_3,00101 , …….. , 00111,00$

Filter_1_4,00110 , …….. , 00111,00$

Filter_1_5,00110 , …….. , 00111,00$

…
…
…
…
…
…
Filter_8_5,00110 , …….. , 00111,00$

5 x 3 Feature maps of size 5x5

8 x 5 Feature maps of size 4x4

Three Feature maps with filters of size 5x5
Weights 5bit, Biases 2bits

www.manaraa.com

47

Figure 5.14 shows the syntax of parameters file of our example model. Users must

structure this file as follows: Start with layer name followed by its feature maps and filters with

their weights and biases. Naming is case sensitive for layers, but not for filters. Must end lines

with a dollar sign. This file should be consistent with the configured model in configuration

stage as well as in parameters inclusion stage, otherwise it will not be accepted by the tool and

will result in an error message. Possible reasons for not accepting a parameters file could be;

invalid file extension or non-matching content; inconsistent filter size, number of layers/filters,

or data representation; missing biases or dollar sign at the end of each line.

VHDL code Generation Process

This section illustrates the process of VHDL code generation using Java. The process

of auto generation is based on the concept of parametrized design implementation. The con-

figuration process is divided into three blocks; platform and network selection block, model

configuration block, and parameters inclusion block.

• Architecture constructor

Architecture constructor is the core block of the generation tool, where it analyzes the

specifications of configured CNN models and make design decisions based on these specifi-

cations. There are four modules that are connected to the architecture constructor, which are

described as follows: graphical user-interface classes, parameterization library manager,

VHDL code generator, and VHDL code storage.

• Graphical User Interface

Graphical user-interface provide the possible configurations of a valid Convolutional

Neural Network to users and is divided into model configuration interface and parameters in-

clusion interface. In model configuration, a complete set of pre-defined layers configuration

www.manaraa.com

48

are provided to help users easily build their models. Further, a sub-module for storing config-

uration is provided in this block. As for parameters inclusion, a set of -pre-defined parameters

are provided in order to format weights and biases. Additionally, a complete parser is con-

structed to parse weights and biases in order to check their validity.

• Parameterization Library Manager

This module handles layer templets and supported functions in each templet. The main

layers in a CNN are convolutional, pooling, and fully-connected layers, and there are three

templets, one for each layer, that include needed functions to implement these layers. For ex-

ample, a convolutional layer is composed of convolution operations followed by bias addition,

and activation function operations. The convolution operation can be realized in different

means that include but are not limited to, systolic array or sliding window. These two functions

are stored in the convolutional layer templet and based on the incoming specifications that are

passed by the architecture constructor, particular functions are selected and structured in a par-

ticular manner. Similarly, there are different activation functions that include but are not lim-

ited to, rectified linear unit, Tanh, or sigmoid, which can be formed/structured based on the

specifications passed by the architecture constructor. This parameterization process also ap-

plies to pooling and fully-connected layers and that is according to their respective functions.

• VHDL code generator and storage

VHDL generation and storage is the last stage in the generation process. Upon passing

model specifications to parametrization library manager, actual CNN layers are formed based

on the available templets, hence generation process can take place. Once the parameterization

process is complete, the code generator writes VHDL code and stores it in a designated folder

relative to the location of the tool on hard-drive.

www.manaraa.com

4
9

Architecture
Builder

Model Configuration
parameters

Weights and Biases

Input

Input

Library Manager

Send requestReceive response

Convolutional Module

--- Internal modules
* Design Description Constructor

* Generic Constructor
* Signal declaration constructor

* Weights and Biases Constructor
*Module Instantiation

* Combinational process

Pool Module

--- Internal modules
* Design Description Constructor

* Generic Constructor
* Signal declaration constructor

* Weights and Biases Constructor
*Module Instantiation

* Combinational process

Fully-Connected Module

--- Internal modules
* Design Description Constructor

* Generic Constructor
* Signal declaration constructor

* Weights and Biases Constructor
*Module Instantiation

* Combinational process

Instantiate Modules

Storage
Generated VHDL

Write Files

Figure 5.15 VHDL code generation process

www.manaraa.com

50

Generated VHDL Details

This section explains the details of auto-generated VHDL, and provides example snap-

shots of the generated code for the first convolutional layer of VGTEST. The generated VHDL

files are structured into six sections as shown in the following chart.

Design details section is basically a header text that gives details about the generated

network such as targeted FPGA platform, implemented network, performance estimation, and

other useful guidelines to implement the network on FPGA.

Figure 5.16 Snapshot of generated VHDL code header section

Generic module specifies the parameters that can make the design reconfigurable with-

out having to make significant changes to the design itself. For example, since FIFO size is

parametrizable, the size can be changed through changing the representing constant of FIFO

size in the generic module without re-writing any VHDL code. We provided this module in

order to ensure reconfigurability of the design without having to reuse VGT to reconfigure the

network by generating new VHDL code.

Sections Design Details

Generic Module

Signals Declaration

Weights and Biases

Internal Module Instantiation

Combinational Processes

--GENERATION DATE/TIME: Thu Dec 25 22:11:56 CST 2017

-- Engineer: Muhammad Hamdan

-- Design Name: HDL GENERATION - CONV LAYER

-- Module Name: CONV_1 - Behavioral

-- Project Name: CNN accelerator

-- Target Devices: Zynq-XC7Z020

-- Number of Operations: 30

-- Number of Clock Cycles: 6

www.manaraa.com

51

Figure 5.17 Snapshot of generic module from model entity

Figure 5.18 Snapshot of signals declaration section

GENERIC (

 constant PERCISION : positive := 5;

 constant DOUT_WIDTH : positive := 5;

 constant BIAS_SIZE : positive := 5;

 constant MULT_SIZE : positive := 13;

 constant MULT_SUM_SIZE : positive := 6;

 constant DIN_WIDTH : positive := 8;

 constant IMAGE_WIDTH : positive := 13;

 constant F_SIZE : positive := 2;

 constant WEIGHT_SIZE : positive := 5;

 constant BIASES_SIZE : positive := 2;

 constant STRIDE : positive := 1;

 constant FEATURE_MAPS : positive := 3;

 constant VALID_CYCLES : positive := 144;

 constant STRIDE_CYCLES : positive := 12;

 constant VALID_LOCAL_PIX: positive := 12;

 constant ADD_TREE_DEPTH : positive := 2;

 constant INPUT_DEPTH : positive := 1;

 constant FIFO_DEPTH : positive := 12;

 constant USED_FIFOS : positive := 1;

 constant ADD_1 : positive := 2;

 constant ADD_2 : positive := 1;

 constant LOCAL_OUTPUT : positive := 5);

---------------- ARCHITECTURE DECLARATION - START----------------------

architecture Behavioral of CONV_LAYER_1 is

------- INTERNAL FIXED CONSTANT & SIGNALS DECLARATION - START-----------

type FILTER_TYPE is array (0 to F_SIZE-1, 0 to F_SIZE-1) of

signed(WEIGHT_SIZE- 1 downto 0);

type FIFO_Memory is array (0 to FIFO_DEPTH - 1) of STD_LOGIC_VEC-

TOR(DIN_WIDTH - 1 downto 0);

type SLIDING_WINDOW is array (0 to F_SIZE-1, 0 to F_SIZE-1) of

STD_LOGIC_VECTOR(DIN_WIDTH- 1 downto 0);

signal VALID_NXTLYR_PIX :integer range 0 to STRIDE_CYCLES;

signal PIXEL_COUNT :integer range 0 to VALID_CYCLES;

signal OUT_PIXEL_COUNT :integer range 0 to VALID_CYCLES;

signal EN_NXT_LYR_1 :std_logic;

signal FRST_TIM_EN_1 :std_logic;

signal Enable_MULT :std_logic;

signal Enable_ADDER :std_logic;

signal Enable_ReLU :std_logic;

signal Enable_BIAS :std_logic;

signal SIG_STRIDE :integer range 0 to IMAGE_SIZE;

signal PADDING_count :integer range 0 to IMAGE_SIZE; --

www.manaraa.com

52

Signals declaration is simply a section where all the design signals are defined. We put

the signals all together in one section to ensure better readability and easy redefinition or ad-

dition of old or new signals if needed.

The weights and biases section handles hardcoding the weights and biases of the model.

This section only applies to small-scale networks. In this section, all filters with their weights

are stored in two dimensional matrices as constants followed by their respective biases.

Figure 5.19 Snapshot of weights and biases section

Internal module instantiation section takes care of instantiating other layers since the

code was based on a modular generation approach.

Figure 5.20 Snapshot of internal module instantiation

------------- FILTER HARDCODED CONSTANTS -WEIGHTS START----------------

constant FMAP_1: FILTER_TYPE:= (("00001","00010"),("00011","00010"));

constant FMAP_2: FILTER_TYPE:= (("00001","00010"), ("00011","00010"));

constant FMAP_3: FILTER_TYPE:= (("00001","00010"), ("00011","00010"));

constant BIAS_VAL_1: signed (BIASES_SIZE-1 downto 0):="01";

constant BIAS_VAL_2: signed (BIASES_SIZE-1 downto 0):="01";

constant BIAS_VAL_3: signed (BIASES_SIZE-1 downto 0):="01";

------------------ MAP NEXT LAYER - COMPONENTS START--------------------

COMPONENT POOL_LAYER_2

 port(CLK,RST :IN std_logic;

 DIN_1_2,DIN_2_2, DIN_3_2:IN std_logic_vector(LOCAL_OUTPUT-1 downto 0);

 VALID_OUT_2, EN_STREAM_OUT_2 :OUT std_logic;

 DOUT_1_2, DOUT_2_2 :OUT std_logic_vector(DOUT_WIDTH-1 downto 0);

 EN_STREAM ,EN_LOC_STREAM_2 :IN std_logic);

END COMPONENT POOL_LAYER_2;

begin

POOL_LYR_2 : POOL_LAYER_2

 port map(

 CLK => CLK,

 RST => RST,

 DIN_1_2 => DOUT_BUF_1_1,

 DIN_2_2 => DOUT_BUF_2_1,

 DIN_3_2 => DOUT_BUF_3_1,

 DOUT_1_2 => DOUT_1_2,

 DOUT_2_2 => DOUT_2_2,

 VALID_OUT_2 => VALID_OUT_2,

 EN_STREAM_OUT_2 => EN_STREAM_OUT_2,

 EN_LOC_STREAM_2 => EN_NXT_LYR_1,

 EN_STREAM => EN_STREAM);

www.manaraa.com

53

 Finally, the combinational process section is the actual implementation of the target

layer. In this section, convolution, pooling, matrix multiplication, bias addition, adder tree, or

activation function operations are applied. The combinational process takes care of processing

data, and the synchronous process updates data every clock cycle.

Table IV Supported operations by the combinational process for CNN layers.

Function/Applicable Layer CONV POOL First FC Later FCs

Signals Reset ✓ ✓ ✓ ✓

Matrix/Vector Multiply ✓ × ✓ ✓

Max/Average Pooling × ✓ × ×

Feature Maps Adder Tree ✓ × ✓ ✓

Filter Values Adder Tree ✓ × ✓ ×

Bias Addition ✓ × ✓ ✓

Activation Function ✓ ✓ ✓ ✓

Process End ✓ ✓ ✓ ✓

www.manaraa.com

54

CHAPTER 6. RELATED WORK

This chapter covers two main components, a thorough survey on hardware implemen-

tations of Convolutional Neural Networks and related FPGA-based implementations of Con-

volutional Neural Networks to this work.

Survey on Hardware Implementations of CNNs

Deep Neural Networks (DNNs) became popular algorithms recently in center-based

services and standalone-embedded applications. A prominent type of DNNs that has attracted

many researchers interest is Convolutional Neural Networks (CNNs). CNNs are used in vari-

ous applications such as visual recognition, handwritten digit recognition, web search, speech

recognition, etc. A huge work has been done over the years to improve the performance and

increase the accuracy of CNNs to meet different application requirements. This made CNNs

computationally very intensive. Thus, to accelerate CNNs and maintain their desired accuracy,

an efficient implementation on hardware is needed. Because CNNs are naturally parallel, mod-

ular and dynamically adaptive, reconfigurable and custom architectures seem to be well suited

for the job. A lot of work has been done in the area of CNNs acceleration, and many CNNs

accelerators have been proposed for different purposes and with different techniques.

In this survey, we will present the hardware implementations (Accelerators) of CNNs

in the following structure. Accelerators will be categorized into three primary platforms: (1)

Custom Hardware Platform; (2) Graphics Processing Unit (GPU) Platform; (3) Field-Program-

mable Gate Array (FPGA) Platform. Under each platform, work of the same or similar objec-

tive will be grouped and presented all together.

www.manaraa.com

55

Custom Hardware Platform

Architecture specialization is seen as a promising path to achieving high performance

at low energy, provided it is possible to find ways to accommodate architecture specialization

and flexibility. Designing a highly specialized and efficient hardware could likely benefit many

of emerging high-performance applications [41].

DaDianNao, a custom multi-chip machine-learning accelerator implemented by Yunji,

et al. [41], can outperform the NVIDIA K20M GPU by up to 450.65x, and reduce energy by

up to 150.31x using 64 nodes. DaDianNao is based on DianNao, a small-footprint high

throughput accelerator proposed by Chen et al [42]. The general architecture is a set of identical

nodes, one per chip. Each node contains significant storage, especially for synapses, and neural

computational units. Authors tackle bandwidth requirements issue through the following de-

sign principles: (1) create a fully distributed architecture; (2) create an asymmetric architecture

where each node footprint is massively biased towards storage rather than computations; (3)

transfer neurons values rather than synapses to minimize required external bandwidth; (4)

break down the local storage into many tiles to enable high internal bandwidth.

While DianNao can perform 452 G-ops/s consuming only 485mW, DaDianNao can

perform 5.58 T-ops/s with only a single node, consuming 15.97W for the whole chip. Having

DaDianNao consuming this amount of power makes the system impractical to be implemented

in mobile devices. ShiDianNao, an energy-efficient design of a visual recognition accelerator

implemented by Du, Zidong, et al [43], is 60x more energy efficient than DianNao [42], where

it can perform 194G-ops/s at its peak, consuming only 320.10 mW.

It is worth mentioning that designs in [41], [42], and [43] are hardwired, thus cannot

efficiently adapt to different network sizes. Vinayak, et al. [44] present a scalable, low-power

www.manaraa.com

56

coprocessor for enabling real-time execution of deep neural networks called nn-X (Neural Net-

work Next). The system is composed of a coprocessor, a host processor (ARM Cortex-A9),

and an external memory. The coprocessor has three main components: processing elements

called collections, a system bus called memory router, and a configuration bus to control data

flow. Each collection is comprised of one convolution engine, one pooling module, and one

non-linear programmable operator. The convolution engine is implemented as fully pipelined

logic and uses memory to cache incoming data. The non-linear operation computes a piecewise

linear approximation of any arbitrary non-linear function. The performance of nn-X in deep

learning applications peaks 200 G-ops/s while consuming less than 4 watts of power.

GPU Platform

Working with custom architectures requires special hardware skills that many research-

ers might not possess. Researchers who are familiar or well suited with high-level program-

ming languages tend to accelerate CNNs using GPUs. GPUs are inexpensive, available in most

recent computers, and easily programmable with standard development kits. Indeed, GPUs can

achieve very high performance, but with high-energy consumption.

Fabian, et al [45] present a ConvNet GPU-based accelerator to tackle face detection

under pose variation. The GPU is mainly used to explore and take advantage of the inherent

possible parallelization of CNNs. On NVidia GeForce 8800 GT at 600MHz, the system pro-

cessed 640 × 480 images at 209 - 497ms per frame on average for eight runtime measurements.

In the same context, Li, Haoxiang, et al [46] also present a GPU-based accelerator for the same

application under visual variations. They adopt a cascaded architecture that operates at multi-

ple resolutions. The GPU can process VGA-resolution images at 100 FPS.

www.manaraa.com

57

FPGA Platform

GPUs do not fit well in energy constrained and mobile embedded systems, because of

their significant energy dissipation. Custom hardware offer a good performance and energy

efficient solution at the disadvantage of significant fabrication cost and limited flexibility [47].

FPGA-based accelerators have attracted more and more attention of researchers because they

have the advantages of good performance, high energy efficiency, fast development round,

relatively moderate cost, and capability of reconfiguration [48]. A lot of work has been carried

out to accelerate CNNs using FPGAs. Proposed CNN accelerators can be generally classified

into two groups: computation engine optimization and memory system optimization.

• Memory System Optimization

Memory bandwidth bottleneck is a critical issue in the acceleration process. Overcom-

ing this barrier can significantly improve the performance of CNN acceleration process.

Generic Memory System Optimization

A matrix multiplier based accelerator architecture was proposed by Yuran, et al [49] to

accelerate the fully connected (FC) and convolutional (CONV) layers of a CNN. In their work

they handle a couple of presented problems as follows: (1) use a stream mapper unit to handle

the overhead of unrolling the convolutions to matrix multiplications; (2) use a prefetch unit

structure to make the address stream to the external memory sequential; (3) optimize a blocking

strategy to make matrix multiplications of different sizes perform efficiently. The accelerator

consists of several processing-unit (PE) chains where each one has a stream-prefetcher, a

stream mapper and a matrix multiplier where the latter accelerates the matrix multiplication in

the CONV and FC layers. The stream store/load (S/L) loads operands to the PE chain and then

stores the results. The stream mapper remaps the data stream to the stream S/L to unroll con-

volutions to matrix multiplication, and the stream prefetcher is used to ensure efficient external

www.manaraa.com

58

memory access. A host processor is used to handle workload except for the convolutional lay-

ers. It communicates with the accelerator through a system bus and they both share the external

memory. Based on dual core ARM cortexA9 running at 800MHz (The host processor), and

Zynqzq7045 FPGA chips using 1600 DSP48Es running at150MHz, the system achieved an

average throughput of 77.8 GFLOPs.

Manoj, et al. [50] accelerate CNNs for speech recognition applications. They reduce

total data transfer between layers through fusing the processing of multi-ConvNet layers (i.e.

exploiting the locality in a convolution’s data flow) to avoid using off-chip memory to store

intermediate data between layers since the data is too large. The HLS tool (Xilinx Vivado HLS

2015.4.2) is used to transform C++ code into hardware and handle pipelining of the arithmetic

units and DRAM transfers. The design employs loop transformations to reorder computations,

increase throughput, and reduce data transfer. Loops are fully unrolled of dimensions Tm X

Tn (adders and multipliers) and to be optimized to maximize the performance. The in, out, and

weight arrays represent on-chip buffers for input, output, and weight data to reduce off-chip

memory access. Copying data in or out of these buffers is done using double buffering to over-

lap data transfer with computation. Implemented on Virtex-7 and applied to AlexNet's first two

layers, the fused layer archived 28% savings in off-chip data transfer, however, DSP, BRAMs,

and about 50% in FPGA's LUTs and FFs increased. They claim that the increase is due to not

fusing the non-linear layers. Further, the accelerator was applied to the first five convolutional

layers of the VGG model. The fused layer accelerator minimized off-chip feature map data

transfer, reducing the total transfer by 95%, from 77MB down to 3.6MB per image.

www.manaraa.com

59

A memory-centric accelerator was developed by Maurice, et al [51] to improve perfor-

mance without increasing memory bandwidth through a flexible memory hierarchy that sup-

ports complex data access through tiling. The accelerator uses BRAM-based multi-bank on-

chip buffers to minimize the required bandwidth through data reuse. To ensure reconfigurabil-

ity and programmability, a cluster of SIMD type of Multiply Accumulate (MACC) PE is used

to accelerate the convolutions. Based on implementation on the Virtex-6 FPGA running at

150MHz, the accelerator shows a reduction of FPGA resources of up to 13x while maintaining

the same performance.

Resource Utilization

Yongming, et al. [52] state that, the organization of computation modules in [51] de-

pends on the number of output feature maps and their number of rows. Because both of these

parameters can change drastically from layer to layer, an analogous resource underutilization

problem occurs. Yongming, et al. present an accelerator where they partition FPGA resources

into multiple convolutional layer processors (CLPs) to maximize resources utilization for a

higher overall throughput and computational efficiency. A Typical CLP for a convolutional

layer is structured as buffered inputs and weights that are forwarded to a vector dot product

block, summed with previous output that is stored in an output buffer, and then stored in the

output buffer. The accelerator operation timeline is segmented wherein each segment each CLP

sequentially processes its layers. The segment ends when all CLPs finish. Applied to AlexNet

on the Virtex-7 485T FPGA, the Multi-CLP accelerator yields a 3.33x higher throughput com-

pared to the Single-CLP used in [47] using the same resources. The Multi-CLP achieved 99%

dynamic utilization, where the single-CLP has dynamic utilization of less than 66%.

www.manaraa.com

60

Chen, et al. [47] propose a design space exploration methodology for CNNs accelera-

tion by optimizing both computation resources and external memory accesses. In this work,

they only implement convolutional layers. They optimize the external memory transfers

through data reuse. The computation engine is implemented as a tree-shaped poly-structure

with 7 inputs from input feature maps, 7 inputs from weights, and one input from bias. 64 poly

structures are duplicated for unrolling loop Tm. For efficient memory access, on-chip double-

buffers are built to operate in a ping-pong manner to overlap data transfer time with computa-

tion. They use external data transfer engines to provide data transfer between the accelerator

and the external memory and to isolate the accelerator from various platform and tool specific

bandwidth features. Loop pipelining is applied to improve the system throughput by overlap-

ping the execution of operations from different loop iterations. Implemented on Vivado HLS

on VC707 board with Xilinx FPGA chip Virtex7 485t running at 100MHz, the accelerator

achieved an overall performance of 61.62 GFLOPS.

Jiantao, et al. [53] state that optimization approaches that are done by [52] and [54] can

be integrated with their work since they both work on the organization of computation units.

Data reuse in the convolution layers is applied multiple times to reduce the bandwidth. FC

layers weights are compressed through using Singular value decomposition (SVD). Floating-

point numbers are converted into fixed-point ones. The FPGA programmable logic consist of

a computing complex, on-chip buffers, a controller, and memory interface streaming engines

(DMAs). The computing complex consists of PEs that do the computations of convolution,

pooling, and FC layers and on-chip buffers prepare data to be used by the PEs and to store the

results. The controller fetches instructions from an external memory and decodes them to or-

chestrate all modules except the DMAs on the PL. The DMAs transfer data and instructions

https://en.wikipedia.org/wiki/Singular_value_decomposition

www.manaraa.com

61

between the external memory on the processing system (PS) side and the on-chip buffers on

the PL side. To fully utilize the bandwidth for FC computations a convolver complex in one

of the PEs is used. They implemented VGG16-SVD on Zynq ZC706 running at150MHz, and

achieved a frame rate at 4.45 fps using 16-bit quantization. The average performance of the

convolutional layers and the full ConvNet is 187.8 G-ops/s and 137.0 G-ops/s.

• Computation Engine Optimization

Parallelization Exploration

A typical approach to optimize the computational engine is parallelism exploration, and

there is a lot of work that has been carried out to optimize computation through this technique.

Generic Parallelization Exploration

Ning, et al. [55] present a multistage data-flow implementation of a complete CNN for

high-speed object recognition. They use a 3D convolver that is connected with FIFO for con-

volution. A rectified linear unit is used as the activation function. The global summation is

used to overcome regular multiplication in the FC layer to save memory and DSP resources.

Accumulators are used to obtain the summation of each feature map. For memory access effi-

ciency, the memory is used as a buffer to store the computation results and serve the input of

the next layer and a recurrent ConvNet is used to improve the capability of object recognition.

Based on Altera Stratix V 5SGSMD5K2F40C2 running at 130MHz, the design achieved a

performance of 409.62 G-ops/s for image size of 32×32, consuming 1113.88 mW

An accelerator that advances the work in [47] was presented by Motamedi, Moham-

mad, et al [48]. They advance the work in [47] through the consideration of all sources of

parallelism. A Parallel convolution engine (PCE) that is combined of parallel block multipliers

with their corresponding adders, exploits intra-kernel parallelism in each convolution. Then, a

combination of PCEs with their corresponding adders perform inter-kernel parallelism. Tiling

www.manaraa.com

62

is used in the kernel and feature map levels to manage data transfer and increase performance.

On-chip buffers are used to hold the necessary data. Implemented on the VX485T FPGA and

applied to AlexNet with 32-bit float point precision, the accelerator achieved an overall per-

formance of 84.2GFLOPs that is 1.9x speedup compared to work in [47].

Huimin, et al. [31] present a CNN accelerator with all layers working concurrently in

a pipelined style to increase throughput. A batch-based computing method is implemented and

applied on FC layers to increase the memory bandwidth utilization. Between each layer, there

are two ping-pong buffers, where the former layer may write to/read from one of the ping-pong

buffers while the next layer reads data from the other buffer. The ping-pong buffers are also

utilized to store the intermediate data to handle the input data and weights, thus reducing data

access workload. This work adopts the 3 types of parallelism (Intra-output parallelism, Inter-

output parallelism and parallelism within a convolution operation) as proposed in [56]. Using

Xilinx VC709 running at 156MHz and applied to AlexNet, the system achieved a peak perfor-

mance of 565.94 G-ops/s and 391 FPS, consuming 30.2W by the FPGA board.

Systolic array implementations

Systolic array implementations seem to be a natural fit to CNNs because they are very

efficient at filtering but are very inflexible. Systolic implementations support only convolu-

tions up to the implemented kernel size [51].

Murugan, et al. [57] accelerate CNNs using a programmable massively parallel copro-

cessor coupled with off-chip memory. The coprocessor uses off-chip memory as a scratchpad

to manage the large intermediate data between CNN layers. Memory load in this work is re-

duced through using low precision data by packing multiple works in every memory operation.

They dedicate 20-bits fixed point for kernel weights and 16-bits for all other values. The system

architecture is organized in parallel as a cluster of vector processing elements, which are arrays

www.manaraa.com

63

of 2D convolvers. In this work, parallelism is mainly used within feature maps and convolution

kernel. On Xilinx Virtex-5 LX330T running at 115MHz, the coprocessor processed 640×480

images with 16bit-pixel precision at 6 FPS, consuming 11 watts.

Srimat, et al. [56] present a dynamically configurable co-processor that automatically

analyzes workloads and configure its hardware and software components to match the exact

mix of different types of parallelism in the workload. In this work, they propose three types of

parallelism, Intra-output parallelism, Inter-output parallelism and parallelism within a convo-

lution operation; however, they apply only the first two mentioned types. The co-processor is

a stateless processing core that consists of 20 2D-convolvers connected to an external memory

and a memory subsystem that consists of three independent memory banks each has one single

ported memory. No internal storage is used and an input switch is used to allow the convolvers

to be dynamically grouped in different ways based on memory bandwidth; however, the size

of the convolver is still fixed. Implemented on Virtex 5 SX240T FPGA running at 120MHz,

the co-processor processed images of size 640 x 480 at 25 - 30 FPS rate and achieved a speedup

of 4.8x compared to [58], consuming less than 14W.

Clément, et al. [58][59][59][59][58][58][59] developed an FPGA stream processor

called CNP for real-time object recognition. The CNP contains a control unit, a parallel vector

arithmetic, a logic unit (VALU), an I/O control unit, and a memory interface. The control unit

is used to sequence the hardwired operations of the VALU (2D convolutions, spatial pool-

ing/subsampling, point-wise non-linear functions, and other more general vector operators).

Parallelization was achieved through an arbiter (multiplex/de-multiplex) that accesses the same

memory location simultaneously through 8 FIFO buffered ports. All operations were per-

formed with 16-bit fixed-point precision. On Xilinx virtex-4 SX35 FPGA running at 200MHz

www.manaraa.com

64

consuming 15W, the system achieved a processing speed of 10 FPS, processing a full 512 ×

384 greyscale images.

A study on the effect of limited precision data representation and computation on neural

networks training was conducted by Suyog, et al [60]. This work is built upon the idea that

algorithm-level noise tolerance can be leveraged to simplify underlying hardware require-

ments. The system consists of systolic array of multipliers, an on-chip memory configured as

FIFO, and other controllers that orchestrate the movement of data and the communication with

the off-chip memory within the FPGA. For a 28×28 systolic array implemented on Kin-

texK325T FPGA, the Xilinx’s Vivado synthesis tool estimated a maximum circuit operation

frequency of 166MHz and a power consumption of 7W which translates to a throughput of

260G-ops/s at a power efficiency of 37 G-ops/s/W.

• Scalable Architectures

Clément, et al. present a runtime reconfigurable dataflow processor for vision called

NeuFlow in [61] and [62]. This work is similar the work presented in [58], however, in [58]

the architecture is presented as a data flow grid. This architecture is designed to process ho-

mogeneous streams of data in parallel, achieve high throughput and provide flexible processing

framework. [63] and [61] architectures have the same components that perform the same tasks

to some extent other than the latter architecture describes the used DMA as a smart DMA

because it complements the work of the control unit. While consuming 10W when imple-

mented on a Virtex-6 FPGA running at 200MHz, the system segmenting 20 categories on 500

× 375 frames at 12 FPS.

www.manaraa.com

65

Paolo, et al. [64] propose a flexible and scalable architectural for CNNs acceleration

based on the tightly-coupled cluster architectural paradigm followed by the PULP platform

[65] that has been configured to suit the needs of CNNs acceleration and adapted to be imple-

mented on a Zynq device. The accelerator presented in [64] is based on the cooperation be-

tween a set of software cores (SW) and a parallel convolution engine that communicate via a

tightly coupled L1 shared scratchpad. The system is connected through an AXI cluster bus to

a Zynq Processing System that hosts a dual core ARM-Cortex A9 and communicates with

external storage. A shared tightly coupled data memory (TCDM) is implemented using dual-

port block RAM primitives. This allows simultaneous access to the memory banks by the com-

putation engine, the DMA, and the SW. Memory banks are partitioned into two sets, one ded-

icated to input features and one dedicated to output features. Each bank is partitioned into at

least two sections to allow overlapping of computation and communication. The computation

engine design is fully parametric and can be scaled in terms of a big set of parameters. Imple-

mented on a Xilinx ZC-706 board running at 100MHz, the system delivers theoretical peak

performance up to 80 GMAC/s, i.e. 160 G-ops/s at two ops per MA for 5×5 filters.

DLAU, a scalable deep learning accelerator unit presented by Chao, et al [66] to speed

up the kernel computational parts of deep learning algorithms. Authors utilize the tile tech-

niques to partition the large-scale input data, FIFO buffers to prevent data loss, pipelines to

minimize memory transfer operations, and computing units reuse to implement the large-size

neural networks. Implemented on XC7Z020 running at 200MHz, DLAU was able to achieve

19.2x and 36.1x speedups for 64×64 and 256×256 network sizes, respectively compared to

Intel Core2 running at 2.3GHz, when DianNao [42] can achieve 117x for the 256×256 network.

The accelerator consumes 234mW and the whole system consumes 1814mW.

www.manaraa.com

66

Related Hardware Implementations of CNNs

The main drawback of accelerating a CNN on an FPGA platform is that developers

have essentially to rebuild the CNN model from scratch, and that takes a long development

round. A few implementations tackled this issue, for example, in [67] authors propose an

FPGA framework that is based on Caffe framework [68] to map CNN layers to an FPGA

platform. The framework mainly uses Xilinx FPGA SDAccel environment [69] to map CNN

layers and generate the bit-stream file. To optimize the computational component, they in-

crease the number of hardware units used to process a problem which in turns increase hard-

ware resources linearly, making it an inefficient optimization method.

HLS tools such as OpenCL-Framework are a good alternative path away from low-

level programming; however, such tools are not highly optimized to take full advantage of the

available parallelism in CNNs and those tools abstract away a lot of the design details. In [70]

authors use the OpenCL framework to implement the AlexNet model on P395-D8 board. Al-

tera OpenCL SDK is used for compilation of OpenCL code to RTL to run on the FPGA accel-

erator. Running at 120MH the P395-D8 board achieved a peak performance of 72.4 GOPS;

however, in our implementation of the same network, the system achieved peak performance

of 611.54GOPs having the system running at 200MHz.

HDL automatic generation for convolutional neural networks was previously proposed.

In [71], authors use high-level descriptive language to generate a Verilog HDL code for CNN

models, where they specify the details of layers and generate each layer independently. Once

all layers are generated, they combine all of them to have a complete accelerator. The generated

code is generic for all different models scale wise. They did not state anywhere in their work

that they store parameters on-chip or hard code them, meaning that they use an external

memory source for small-scale models which is not an efficient way to handle parameters for

www.manaraa.com

67

such models. Their accelerator can achieve a performance of 222.1 GOP/s for AlexNet, while

ours can achieve 611.52 GOP/s for the same model. Further, our VHDL generation tool is

designed to generate an optimized code/CNN implementation that is modular, scalable, recon-

figurable, highly parallel, and fully pipelined.

In [72] authors avoid loading parameters from an external memory source by storing

them in an on-chip memory. In their implementation, they adopt a parallel-serial style to in-

crease the throughput; however, this strategy does not take full advantage of the available par-

allelism in the CNN as well as different layers do not work concurrently. They implemented a

small-scale neural network that performs digits recognition on Xilinx XC7Z045. Under 172

MHZ, their system is capable of processing about 70K 28×28 images per second. In our im-

plementation, we avoid using any sort of memory storage to store parameters, rather we hard

code them as constants to maximize the utilization of the available hardware resources and

reduce the use of the expensive ones, and get over memory bandwidth limitations. Our system

is capable of processing up to 125K 28×28 Images/s, having the system running at 200 MHZ.

Optimizing computation in CNNs can significantly improve the overall performance

of a CNN model. Many attempts have been made to optimize computation through various

parallelism approaches. Authors in [57] and [73] use parallelism only in convolution opera-

tions and output feature maps. This work implements three types of parallelism: parallelism in

convolution operations, parallelism in input feature maps, and parallelism in output feature

maps. In addition, the design in this work is implemented in a pipelined style where all layers

work concurrently that helped increase the throughput of the system, achieving a peak perfor-

mance of 611.54 GOPs for AlexNet model.

www.manaraa.com

68

CHAPTER 7. HARDWARE ARCHITECTURE

This chapter explains the details of the hardware architecture pieces which were used

for small and large-scale models. The chapter is divided into two sections, the first section

covers the details of small-scale architectures and the other section shows the architecture used

to implement AlexNet model.

Small-Scale Models Architecture

Small scale models can be implemented on different FPGA boards based on their size

and number of parameters they comprise. In this section we will target the Zedboard for our

previously used example in CHAPTER 5. , VGTEST model.

System Architecture Overview

DRAM PROCESSING UNIT UART

ACCELERATOR (PL)

AXI-LITE (CONTROL SIGNALS)

AXI-STREAM (DATA-STREAM)

DMA

Figure 7.1 Top-level architecture of the system

www.manaraa.com

69

Figure 7.1 describes the top-level architecture of the proposed system using the Zed-

board. DRAM is used to store images of the target dataset; processing unit is used to perform

classification operation and that is to avoid using expensive and complex FPGA operations

like natural logarithm; AXI-Stream is used to increase the throughput of the system through

continuous pixel streaming into the accelerator. Direct memory access(DMA) controller is

used to manage communication or data transfer between the accelerator and the DRAM; Fi-

nally, the accelerator represents the developed core for the acceleration process. The details of

the accelerator will be broken down into modules and presented in the following subsection.

Accelerator Architecture

The accelerator can be viewed as a combination of four different modules; top level

interface module, used to interface with the AXI-stream; convolution module, used to perform

computation and handle convolutional layers; pooling module, used to perform maximum or

average pooling operation in pooling layers; and matrix multiplication module, used to perform

matrix multiplication and handle fully-connected layers.

• Convolution Module Architecture

Convolutional layers account for most of the operations in the CNN, thus it is necessary

to optimize the computational engine through maximizing parallelism and simplifying the

computational operations. We designed a hardware architecture that takes advantage of the

three parallelism techniques we mentioned in Generic Parallelization Exploration. The process

in convolutional layers begins by streaming multiple or single vectors of data, then using a

sliding window, we achieve the first parallelism technique through multiplying the input-data

(receptive region) covered by the sliding-window (filter) parameters in a single clock cycle.

To achieve the second technique of parallelism, each sliding window with its MACC opera-

tions is considered as a one processing element (PE) and the number of PEs is equal to the

www.manaraa.com

70

number of input data vectors. The last parallelism technique is achieved through extracting

multiple feature maps at the same time, where that is also achieved through the parallel PEs.

The complete process of a convolutional layer can be summarized as follows; First,

stream pixels and perform convolution operation for multiple input data vectors; Second, add

up the values of each filter (window) together, then add up all the input data vectors together

in a pipelined style to form one data vector; Third, extract multiple feature maps from the

unified data vector; Fourth, add biases to their corresponding extracted feature map; Fifth and

last, apply ReLU activation function to all extracted feature maps, where it is basically a zero-

thresholding operation.

PE1

PE2

PEn

Input Stream

Weights Kernel -1

Weights Kernel -2

Reg Reg Reg

Reg Reg Reg

RegRegReg

DIN

FIFO

FIFO

WEIGHTS MULTIPLICTION

ADDER-TREE

Weights Kernel -2

Weights Kernel -n

M ULTIPL ICTI ON

M ULTIPL ICTI ON

M ULTIPL ICTI ON

IN M 2-O M1- Kernel

IN M 2-O M2- Kernel

IN M 2-O Mn- Kernel

Figure 7.2 Processing element details in a convolutional layer for a 3 x 3 filter

Figure 7.2 shows the hardware architecture details of a processing element in a convo-

lutional layer for an example filter of size 3×3. PEs are scalable to different filter sizes. INM2-

OM1-kernel, is the kernel that includes the weights to extract sub-feature map 1 of feature map

1 from input map 2.

www.manaraa.com

71

The architecture details of a complete convolutional layer are shown in Figure 7.3. The

difference between the first convolutional layer and later convolutional layers is that the first

layer might only have one processing element if the image is of grayscale type.

PE1

PE2

PEn

INPUT-STREAM

IN-MAPS
ADDER-TREE

vector 1

vector 2

vector N

of PEs = # of IN- MAPs

OUT-MAP1

OUT-MAP2

OUT-MAPn

of OUT-MAPs = # Extracted Feature maps

Bias
1

Bias
2

Bias
N

+

+

+

ReLU
Intermediate

Reg

Intermediate

Reg

Intermediate

Reg

Figure 7.3 Hardware details of a complete convolutional layer

• Pooling Module Architecture

The architecture of pooling layer is the simplest. In fact, in this layer only one operation

is performed, which is max or average pooling. Pooling layer takes up intermediate values

stored in buffers from the previous layer and applies a sliding window that has the size of the

pooling filter and a step size based on the specified stride value. This sliding window is similar

to the one used in the convolutional layer, except that the performed operation is max pooling

and no weights multiplication is performed. Results from max-pool are stored in buffers that

feed the next layer. The max pooling operation is performed for all incoming feature maps in

one clock cycle. Architecture details of the pooling layer are described in Figure 7.4.

www.manaraa.com

72

PE1

PE2

PEn

DIN
Reg Reg

Reg Reg

DIN

FIFO

<

<

<

Reg

Reg

Reg

Stride
Enable

Figure 7.4 Max pooling architecture using filter size of 2×2

• Matrix Multiplication (Fully-Connected Layer) Architecture

The architecture of the FC layer is similar to the convolutional module architecture

except that the convolution operation is replaced with matrix multiplication operation. The

process starts by streaming data from the previous layer’s intermediate buffers into the fully-

connected layer. For the first FC layer, the sliding window has the size of the input feature map

and that is to extract features for each neuron in the input feature map. For later FC layers, no

sliding windows are used, and multiplication is applied directly. The architecture of a fully-

connected layer is shown in Figure 7.5. The processing elements represent matrix multipliers.

PE1

PE2

PEn

INPUT-STREAM

IN-MAPS
ADDER-TREE

vector 1

vector 2

vector N

of PEs = # of IN- MAPs

OUT-MAP1

OUT-MAP2

OUT-MAPn

of OUT-MAPs = # Extracted Feature maps

Bias
1

Bias
2

Bias
N

+

+

+

ReLU
Intermediate

Reg

Intermediate

Reg

Intermediate

Reg

Figure 7.5 Hardware architecture of fully-connected layer

www.manaraa.com

73

Large Scale CNN Architecture

The goal intended from implementing a large-scale CNN is to demonstrate the adapta-

bility and capability of VGT. The tool generates VHDL code for the network layers; however,

the top-level module is not covered yet by the tool. As a case study, we implemented the large

scale AlexNet CNN [8].

The architecture of a large-scale CNN is slightly different from small-scale CNN ar-

chitecture. Since we cannot hardcode parameters nor store them on an on-chip memory be-

cause of their massive size, we are ought to store them on an external memory source. This in

fact, introduces a lot of complication in the process as we need to take into account memory

accesses for loading parameters from the external memory source. The architecture of the con-

volutional and pooling layers is similar to those of small-scale CNNs, but the fully-connected

layer architecture is different. The FC layer as we said earlier, accounts for most of the network

parameters, hence we cannot simply perform a huge matrix multiplication operation.

As a matter of fact, the architecture of the fully-connected layer of AlexNet is adopted

from the work in [31]. Authors use the same parallelism techniques we use for small-scale

models and have similar approaches to what we have done for small scale networks, hence we

followed their implementation of the large scale AlexNet.

The amount of parallelism in AlexNet is massive and is subject to the available hard-

ware resources on FPGA. Authors in [31], introduced a parallelism space exploration approach

to balance between parallelism utilization and the available hardware resources available on

FPGA. Further, they proposed a decent methodology for optimizing memory bandwidth to

achieve high performance. For more details, we recommend reading that paper.

www.manaraa.com

74

Since the main difference between large and small-scale architectures lies within the

fully-connected layer architecture, we will only describe the architecture of the fully connected

layer. The first FC in AlexNet requires about 398 million multiplication operations. The

weights matrix is of size ((6×6×256) × 4096) and the input vector is of size (1 × 9216). To

perform such a massive matrix multiplication operation, the input vector should be divided

into small and equal vectors (1 × 𝑋𝑛
𝑖), and weights matrix should also be divided into similar

(𝑋𝑛
𝑖𝑗

 × 1) vectors. The multiplication operation is performed as shown in Equation 7.1. Results

from the small vector multiplication are stored in a temporary output. When all multiplications

for a complete input vector are done, final results are generated and stored in designated out-

puts: 𝑌1 → 𝑌𝑗 . The multiplication operation is illustrated in Figure 7.6.

∑ ∑ (1 × 𝑋𝑛
𝑖) ∗ (𝑋𝑛

𝑖𝑗
 × 1)

𝑘=
9216

𝑛

𝑖=1
= 𝑌𝑖

𝑗𝑚=4096
𝑗=1 (7.1)

Input Vector 1 x 9216

1 × 𝑋𝑛
𝑖

4096

9
1

2
6

1
 ×

 𝑋
𝑛 𝑖𝑗

×

Output Vector 1 x 4096

𝑌𝑖
𝑗

𝑌𝑖
1

Figure 7.6 Fully-connected layer architecture of a large-scale CNN, (Adapted from [31])

www.manaraa.com

75

CHAPTER 8. RESULTS AND EVALUATION

To demonstrate the functionality and scalability of VGT, we implemented two bench-

marked models. This chapter illustrates the implementation details of LeNet-5 [18], and

AlexNet [8]. As for AlexNet implementation as stated earlier in CHAPTER 7. , we adopted

the strategy proposed in [31] in managing memory bandwidth and desired degree of parallel-

ism.

Implemented Models Details

AlexNet implementation is not a fully-automated implementation, where the tool was

only responsible for generating VHDL code for the layers without handling the storage of

weights and biases. In AlexNet implementation, 16-bit fixed point precision is used for weights

representation, and 8-bit and 16-bit fixed point precisions are used in LeNet-5 implementation.

LeNet-5 Model

LeNet-5 model comprises three convolutional layers, two pooling layers, and one fully

connected layer. The number of parameters for the entire model is only ~1.25x times the pa-

rameters required for the first convolutional layer in AlexNet; however, this small model is

good enough to perform digit recognition with decent accuracy.

Table V LeNet-5 model configuration

Layer Dimensions 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 Feature Maps Parameters

Input Image 28 × 28 × 1 - -

CONV 1 24 × 24 × 1 5 × 5 6 156

POOL 1 12 × 12 × 1 2 × 2 - 0

CONV 2 8 × 8 × 1 5 × 5 16 2416

POOL 2 4 × 4 × 1 2 × 2 - 0

CONV 3 1 × 1 × 120 - 120 30840

FC 2 1 × 1 × 84 - 84 10164

Total - - - 43576

www.manaraa.com

76

Table V shows the details of LeNet-5 model; the operations performed in each layer,

and the number of parameters each layer accounts for. The number of parameters shown in

this table is different from what is reported in [18], where we consider input images of size

28×28 by which later feature maps sizes are changed. Further, we do not follow their strategy

for extracting feature maps for C3, where we establish all connections. Although establishing

all connections accounts for more parameters, but it actually improves accuracy and general-

izes the model to be more parameterizable and similar to other generic CNN models. This

indeed, puts away any special extra functions to be implemented for this single model.

Since the number of parameters in LeNet-5 is very small compared to AlexNet, we

managed to have the parameters hard-coded. This strategy helped significantly improve the

overall throughput of the system as we do not have to deal with external memory bottleneck

for loading parameters, and it improved the overall utilization of hardware resources.

Figure 8.1 Original LeNet-5 architecture [18]

Figure 8.2 Implemented LeNet-5 architecture, (Adapted from [18])

www.manaraa.com

77

AlexNet Model

AlexNet model is one of the most prominent benchmarked large-scale CNN models.

This model was proposed back in 2012 when it had won ImageNet Challenge (ILSVRC) 2012,

achieving a top-5 accuracy of 84.7%, performing image classification of colored images of

size 224x224 to 1000 different classes. Reported by the authors of AlexNet, the model takes

between 5~6 days to be trained on two GTX580 3GB GPUs. This shows how large the model

is, where it comprises about 60 million parameters. The model consists of five convolutional

layers some of which are followed by max-pooling, and three fully-connected layers.

Hardcoding 60 million parameters is impractical because of the huge size those param-

eters account for, hence those parameters are stored in an external memory source. Table VI

shows the details of AlexNet architecture, where Layer is the layer name, INFs and OUTFs are

the input and output feature maps, Featuresize is the size of a feature map, Filtersize is the size

of filter that is used in the convolution operation, and Stride is the shifting stride of the used

filer during the convolution operation.

Table VI AlexNet architecture details

Layer INFs OUTFs Featuresize Filtersize Stride Parameters

Input Image 3 224 × 224 -

Convolution 1 96 96 55 × 55 11 × 11 4 34944

Pooling 1 96 27 × 27 3 × 3 2 -

Convolution 2 256 256 27 × 27 5 × 5 1 614656

Pooling 2 256 27 × 27 3 × 3 2 -

Convolution 3 256 384 13 × 13 3 × 3 1 885120

Convolution 4 384 384 13 × 13 3 × 3 1 1327488

Convolution 5 384 256 13x13 3 × 3 1 884992

Pooling 5 256 6 × 6 3 × 3 2 -

Fully-connected 6 4096 4096 1 × 1 -- -- 37752832

Fully-connected 7 4096 4096 1 × 1 -- -- 16781312

Fully-connected 8 1000 1000 1 × 1 -- -- 4097000

www.manaraa.com

78

The number of parameters of FC layers can be calculated as shown in Equation 8.1

𝐹𝐶𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = weights + biases → 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 × 𝐼𝑁𝑚𝑎𝑝 × 𝑂𝑈𝑇𝑚𝑎𝑝𝑠 + 𝑂𝑈𝑇𝑚𝑎𝑝𝑠 =

 62 × 256 × 4096 + 4096 = 37752832 (8.1)

Equation 8.1 can also be used to calculate the number of parameters for convolutional

layers by replacing 𝐼𝑁𝑚𝑎𝑝𝑠𝑖𝑧𝑒

2 with 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒
2
, so the total number of parameters for the first

convolutional layer = 112 × 3 × 96 + 96 = 34944 parameter.

Figure 8.3 AlexNet architecture: ImageNet 2012 winning CNN model. (Adapted from [31])

Results

The evaluation of the implemented models is based on simulation, synthesis and post

implementation results obtained from ISE [74] and Vivado [37] tools .

LeNet-5 Model

We simulated LeNet-5 model using ISE and Vivado simulators, using test weights and

biases. Simulation results of LeNet-5 are shown in Figure 8.4. Results matched up in behav-

ioral, synthesis, and post implementation simulations. We verified the correctness of the ob-

tained results from simulation by implementing the network in MATLAB.

www.manaraa.com

79

Figure 8.4 Post-implementation simulation results of LeNet-5 using 16-bit precision

Hardcoding model parameters as constants does not only help overcome memory bot-

tleneck, but it also can optimize the use of DSP blocks. To test this hypothesis, we implemented

LeNet-5 model with 8-bit precision using two different versions of Xilinx synthesis tools, hav-

ing them running at their default synthesis/implementation design goal.

We found out that Vivado optimized out all DSP48 blocks, where no blocks were re-

ported in the post-implementation report, while ISE reported a total DSP48 block utilization

of 89% with a total reduction of 33% in other hardware resources compared to Vivado utiliza-

tion report. Table VII shows utilized resources of LeNet-5 using 8-bit precision.

Table VII Hardware resource utilization of 8-bit LeNet-5 implementation on Zynq xc7z020

Resources Slice Registers LUTS DSP

Available
106400 53200 220

Resources

Layers/Tools Vivado ISE Vivado ISE Vivado ISE

Conv-1 (C1) 1448

13839

953

10015

0

196

Pool-2 (S2) 1516 747 0

Conv-1 (C1) 6892 4905 0

Pool-4 (S4) 1844 1057 0

Conv-1 (C1) 5731 6112 0

FC6 (F6) 1738 2661 0

Total 19169 16435 0

Utilization 18.02% 13.01% 30.89% 18.83% 0% 89.09%

www.manaraa.com

80

Table VIII shows hardware resource utilization when implementing LeNet-5 on Virtex-

7 (7vx690tffg1157). For both used bit representations, ISE tool used DSP48 blocks, and the

used DSP48 blocks are 57% more than those were used in the Zedboard despite the fact that

the used model and parameter representation are exactly the same in both cases.

Table VIII Resource utilization of LeNet-5 implemented on Virtex-7 using 8 and 16-bit

In conclusion, hardware utilization in the case of hardcoded constants can be optimized

to target particular hardware resources by specifying special synthesis directives to synthesis

tools. In this implementation, ISE synthesis optimization targeted performance, where the syn-

thesis report showed a maximum operational frequency of 387MHz when implementing 8-bit

LeNet-5 on the Zedboard and 434MHz when implemented on Virtex-7. The variation in speed

here is because more DSP48 blocks were used in Virtex-7.

On the other hand, Vivado synthesis optimization targeted area, where we have seen

less hardware resources used for both implementations, 8-bit and 16-bit LeNet-5, yet this was

on the account of having the design running at maximum operational frequency of 200MHz,

when the same design ran at maximum speed of 434MHz through ISE.

We evaluated LeNet-5 implementation by comparing it with other related work and a

software implementation of our own. Evaluation is shown in Table IX.

Resources
Slice Registers

(FF)
LUTS DSP48 Blocks

Available 866400 433200 3600

Precision 8-bit 16-bit 8-bit 16-bit 8-bit 16-bit

Used 13501 27530 9778 17162 309 553

Utilization 1.56% 3.18% 2.26% 3.96% 8.58% 15.36%

www.manaraa.com

81

Table IX LeNet-5 implementation in comparison to other related

Implementa-

tion

Platform Frequency

(MHZ)

FPS

(28×28)

Speedup

Software Intel® Core™ i7-6700HQ 2600 2.5K baseline

[75] Xilinx XC7Z045 172 70K 28x

This work Virtex7 200 125K 50x

AlexNet Model

AlexNet was implemented on Virtex-7 only due to its large size. Table X Shows syn-

thesis results of hardware resource utilization of AlexNet, different implementations of

AlexNet model in comparison to this implementation are illustrated in Table XI , and Table III

shows related implementations that are based on HDL generation.

Table X Resources Utilization by AlexNet model.

Resources (VirtexVC709) FF LUTS DSP BRAM

Available 866400 433200 3600 2940

used 269845 287461 2070 2023

Utilization 31.14% 66.35% 57.5% 68.8%

Table XI Comparison with other implementations of AlexNet model

 Platform Frequency (MHZ) GOP/s Processing time (ms)

[76] Altera Stratix-V 120 136.5 20.1

[31] Virtex7- VX690T 156 565.9 2.56

[77] Stratix-V GXA7 100 114.5 >12.5

[47] Virtex7-VX485T 100 61.62 21.61

This work Virtex7- VX690T 200 611.5 2.41

Table XII Comparison with other automatic HDL generation implementations

 Platform Frequency (MHZ) GOP/s / GMACs Model

[67] Virtex7- VX690T 200 45.8 GOP/s AlexNet

[75] Virtex 7-VX485T 150 16.42 GMAC/s LeNet-5

[71] Virtex7- VX690T 100 222.1 GOP/s AlexNet

This work Virtex7- VX690T 200 611.5 GOP/s AlexNet

www.manaraa.com

82

CHAPTER 9. CONCLUSION AND FUTURE WORK

In this work, we designed and implemented an FPGA-based VHDL generation tool

(VGT) for Convolutional Neural Networks implementation. The tool was developed in Java,

and is designed to facilitate the process of hardware acceleration of Convolutional Neural Net-

works models using FPGAs through parametrizing the implementation of those models.

The tool offers a graphical user-interface through which users can on the fly configure

their target CNN model by providing model specifications. VGT reduces development time

needed to implement a CNN significantly, overcomes barriers introduced by the complexity

of development in hardware descriptive languages, and mitigates under-optimization caused

by high level synthesis tools. The tool is optimized to generate a modular, scalable, reconfig-

urable, and parallel implementation of CNN models.

We demonstrated our VHDL generation tool by implementing a small-scale “LeNet-

5” CNN model and a large-scale one “AlexNet” on virtex-7. Having the FPGA running at 200

MHz, the system is capable of processing up to 125K images of size 28×28 for the small-scale

model and achieved a peak performance of 611.52 GOP/s for the large scale one.

Small-scale CNN models utilize what we call “hardcoded constants approach” in han-

dling CNN parameters “weights and biases”. This indeed, contributed to improving the overall

performance of implemented models, and offered more flexibility with synthesis tool imple-

mentation in terms of area and performance optimization strategies. In one hand, we were able

to optimize all DSP blocks out, where multiplication operations where replaced by shift regis-

ter operations, for implementations ran on optimized area strategy. On the hand, DSP blocks

we fully utilized for implementations ran on optimized performance strategy.

www.manaraa.com

83

Thus far, the proposed tool does not provide smart automated decisions for used FPGA

platform and CNN model. Hence, we aim to extend this work through incorporating a design

space exploration methodology which will mainly handle matching provided CNN model and

desired implementation strategy with the adequate FPGA platform. In other words, if a model

is constrained by area, power, or performance, then the tool will generate an implementation

that will meet those design constrains and choose the target FPGA platform that best suits the

application. Moreover, we aim to support more benchmarked CNN models and other neural

networks algorithms such as recurrent neural networks. Lastly, we might extend the generated

implementation output form to include C or C++ languages besides VHDL to allow users, in

exceptional cases, advance their implementation to meet their special desired implementation

needs/constrains without having to hustle with hardware descriptive languages, i.e. VHDL.

www.manaraa.com

84

REFERENCES

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A Neural Probabilistic Language

Model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155, 2003.

[2] R. Collobert and J. Weston, “A unified architecture for natural language processing,”

Proc. 25th Int. Conf. Mach. Learn. - ICML ’08, vol. 20, no. 1, pp. 160–167, 2008.

[3] A. Coates, A. Arbor, and A. Y. Ng, “An Analysis of Single-Layer Networks in

Unsupervised Feature Learning,” Aistats 2011, pp. 215–223, 2011.

[4] Q. V Le, A. Coates, B. Prochnow, and A. Y. Ng, “On Optimization Methods for Deep

Learning,” Proc. 28th Int. Conf. Mach. Learn., pp. 265–272, 2011.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition,” IEEE Trans. Audio, Speech

Lang. Process., vol. 20, no. 1, pp. 30–42, 2012.

[6] G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech

Recognition,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

[7] J. L. F. Pereira and R. J. F. Rossetti, “An integrated architecture for autonomous

vehicles simulation,” Proc. 27th Annu. ACM Symp. Appl. Comput. - SAC ’12, pp. 286–

292, 2012.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” pp. 1–9, 2012.

[9] G. Lacey, G. W. Taylor, and S. Areibi, “Deep Learning on FPGAs: Past, Present, and

Future,” 2016.

[10] “MACHINE LEARNING.” [Online]. Available: http://www.mlplatform.nl/what-is-

machine-learning/. [Accessed: 01-Apr-2017].

www.manaraa.com

85

[11] P. G. Papadourakis, “Introduction To Neural Networks.”

[12] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient Descent,” Proc.

COMPSTAT’2010, pp. 177–186, 2010.

[13] L. Bottou, “Stochastic Gradient Learning in Neural Networks,” Proc. Neuro-Nımes,

vol. 91, no. 8, 1991.

[14] “SoftMax Classifier.” [Online]. Available:

http://knet.readthedocs.io/en/latest/softmax.html. [Accessed: 07-Jul-2017].

[15] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].

Available: http://cs231n.github.io/convolutional-networks/. [Accessed: 01-Jan-2017].

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012.

[17] D. Scherer, A. M??ller, and S. Behnke, “Evaluation of pooling operations in

convolutional architectures for object recognition,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6354

LNCS, no. PART 3, pp. 92–101, 2010.

[18] “LeNet-5.” [Online]. Available: http://yann.lecun.com/exdb/lenet/

[19] J. Dong, M. Lin, Y. Wei, Q. Chen, H. Lai, and S. Yan, “ Network in Network,” 2014.

[20] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “FireCaffe: near-linear

acceleration of deep neural network training on compute clusters,” 2016 IEEE Conf.

Comput. Vis. Pattern Recognit., pp. 1–13, 2016.

[21] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural

Network,” Proc. 2016 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays -

FPGA ’16, pp. 26–35, 2016.

www.manaraa.com

86

[22] C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 07–12–June, pp. 1–9, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Arxiv.Org, vol. 7, no. 3, pp. 171–180, 2015.

[24] Digital Integrated Circuit design. .

[25] coep.vlab.co.in, “Introduction to FPGA and Verilog Programming. Retrieved 26

December 2017,” 2011. [Online]. Available:

http://coep.vlab.co.in/?sub=29&brch=88&sim=228&cnt=1. [Accessed: 01-Jan-2017].

[26] “Texas-instruments White paper.” [Online]. Available: http://www.ni.com/white-

paper/6984/en/. [Accessed: 01-Jan-2017].

[27] “Xilinx-ASIC.” [Online]. Available: https://www.xilinx.com/fpga/asic.htm.

[Accessed: 01-Jan-2017].

[28] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems,” 2016.

[29] “2015- Deep Learning with Limited Numerical Precision.” .

[30] “LightNN : Filling the Gap between Conventional Deep Neural Networks and

Binarized Networks,” pp. 2–7.

[31] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang, “A high

performance FPGA-based accelerator for large-scale convolutional neural networks,”

2016 26th Int. Conf. F. Program. Log. Appl., pp. 1–9, 2016.

[32] M. K. Hamdan and D. T. Rover, “VHDL generator for a high performance

convolutional neural network FPGA-based accelerator,” in 2017 International

Conference on ReConFigurable Computing and FPGAs (ReConFig), 2017, pp. 1–6.

www.manaraa.com

87

[33] S.-C. Liu, T. Delbruck, J. Kramer, G. Indiveri, and R. Douglas, Analog VLSI: Circuits

and Principles. MA, USA: MIT Press Cambridge, 2002.

[34] M. C. Herbordt et al., “Achieving high performance with FPGA-based computing,”

Computer (Long. Beach. Calif)., vol. 40, no. 3, pp. 50–57, 2007.

[35] D. Gschwend, “ZynqNet : An FPGA-Accelerated Embedded Convolutional Neural

Network,” no. August 2016.

[36] Xilinx UG998, “Introduction to FPGA Design with Vivado High-Level Synthesis,”

2013. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/ug998-%0Avivado-intro-

fpga-design-hls.pdf. [Accessed: 01-Jan-2017].

[37] Xilinx UG902, “Vivado Design Suite User Guide, High-Level Synthesis,” 2016. .

[38] P. Release, “Xilinx buys high-level synthesis EDA vendor,” 2016. [Online].

Available: http://www.eetimes.com/document.asp?doc_id=1258504. [Accessed: 01-

Jan-2017].

[39] J. Cooley, “Cadence to acquire Forte Cynthesizer at a rumored fire sale price.,” 2014. .

[40] “Vivado High-Level Synthesis.” [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

[Accessed: 07-Aug-2017].

[41] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” Microarchitecture

(MICRO), 2014 47th Annu. IEEE/ACM Int. Symp., pp. 609–622, 2014.

[42] T. Chen et al., “DianNao: A Small-Footprint High-Throughput Accelerator for

Ubiquitous Machine-Learning,” Proc. 19th Int. Conf. Archit. Support Program. Lang.

Oper. Syst., pp. 269–284, 2014.

www.manaraa.com

88

[43] Z. Du et al., “ShiDianNao: Shifting Vision Processing Closer to the Sensor,” Isca, pp.

92–104, 2015.

[44] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 G-ops/s mobile

coprocessor for deep neural networks,” IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. Work., pp. 696–701, 2014.

[45] F. Nasse, C. Thurau, and G. a Fink, “Face Detection Using GPU-Based Convolutional

Neural Networks,” Comput. Anal. Images Patterns, pp. 83–90, 2009.

[46] L. Haoxiang and Lin, “A Convolutional Neural Network Approach for Face

Identification,” IEEE Conf. Comput. Vis. Pattern Recognit., pp. 5325–5334, 2015.

[47] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based

Accelerator Design for Deep Convolutional Neural Networks,” Proc. 2015

ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays - FPGA ’15, pp. 161–170,

2015.

[48] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design Space Exploration of

FPGA-Based Deep Convolutional Neural Networks,” 21st Asia South Pacific Des.

Autom. Conf., pp. 575–580, 2016.

[49] L. Adhianto et al., “FPGA-accelerated deep convolutional neural networks for high

throughput and energy efficiency,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp.

685–701, 2010.

[50] C. Draft and D. N. O. T. Distribute, “Fused-Layer CNN Accelerators,” 2016.

[51] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric

accelerator design for convolutional neural networks,” 2013 IEEE 31st Int. Conf.

Comput. Des. ICCD 2013, pp. 13–19, 2013.

www.manaraa.com

89

[52] Y. Shen and M. Ferdman, “Maximizing CNN Accelerator Efficiency Through

Resource Partitioning,” vol. 1.

[53] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural

Network,” Proc. 2016 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays -

FPGA ’16, pp. 26–35, 2016.

[54] Y. Shen, M. Ferdman, and P. Milder, “Overcoming resource underutilization in spatial

CNN accelerators,” 2016 26th Int. Conf. F. Program. Log. Appl., pp. 1–4, 2016.

[55] N. Li, S. Takaki, Y. Tomiokat, and H. Kitazawa, “A Multistage Dataflow

Implementation of a Deep Convolutional Neural Network Based on FPGA For High-

Speed Object Recognition,” pp. 165–168, 2016.

[56] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically

configurable coprocessor for convolutional neural networks,” ACM SIGARCH

Comput. Archit. News, vol. 38, no. 3, p. 247, 2010.

[57] M. Sankaradas et al., “A Massively Parallel Coprocessor for Convolutional Neural

Networks,” Icasap, pp. 53–60, 2009.

[58] C. Poulet, J. Y. Han, and Y. Lecun, “CNP : AN FPGA-BASED PROCESSOR FOR

CONVOLUTIONAL NETWORKS Cl ´,” vol. 1, no. 1.

[59] C. Farabet, C. Poulet, and Y. LeCun, “An FPGA-based stream processor for

embedded real-time vision with convolutional networks,” 2009 IEEE 12th Int. Conf.

Comput. Vis. Work. ICCV Work. 2009, pp. 878–885, 2009.

[60] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning with

Limited Numerical Precision,” Proc. 32nd Int. Conf. Mach. Learn., vol. 37, pp. 1737–

1746, 2015.

www.manaraa.com

90

[61] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Lecun,

“NeuFlow: A runtime reconfigurable dataflow processor for vision,” IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit. Work., 2011.

[62] Y. Lecun et al., “Large-Scale FPGA-based Convolutional Networks Chapter in

Machine Learning on Very Large Data Sets ,” Mach. Learn. Very Large Data Sets, pp.

1–26, 2011.

[63] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,

“Hardware Accelerated Convolutional Neural Networks for Synthetic Vision

Systems,” Proc. Int. Symp. Circuits Syst., pp. 257–260, 2010.

[64] P. Meloni, G. Deriu, F. Conti, I. Loi, L. Raffo, and L. Benini, “Curbing the roofline,”

Proc. ACM Int. Conf. Comput. Front. - CF ’16, pp. 376–383, 2016.

[65] D. Rossi et al., “A 60 GOPS/W, -1.8 v to 0.9 v body bias ULP cluster in 28 nm UTBB

FD-SOI technology,” Solid. State. Electron., vol. 117, pp. 170–184, 2016.

[66] C. Wang, Q. Yu, L. Gong, X. Li, and I. Y. Xie, “DLAU: A Scalable Deep Learning

Accelerator Unit on FPGA,” vol. XX, no. X, pp. 1–5, 2016.

[67] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi, “Caffeinated

FPGAs: FPGA Framework For Convolutional Neural Networks,” arXiv, 2016.

[68] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” ACM

Int. Conf. Multimed., pp. 675–678, 2014.

[69] “Xilinx Inc. SDAccel Development Environment User Guide.” [Online]. Available:

https://www.xilinx.com/support/documentation-navigation/development-

tools/software-development/sdaccel.html. [Accessed: 07-Aug-2017].

www.manaraa.com

91

[70] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Accelerator for Large-

Scale Convolutional Neural Networks,” Proc. 2016 ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays - FPGA ’16, pp. 16–25, 2016.

[71] Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic Code Generation of Convolutional

Neural Networks in FPGA Implementation,” in International Conference on Field-

Programmable Technology (FPT), 2016, pp. 61–68.

[72] J. Park and W. Sung, “Fpga Based Implementation of Deep Neural Networks Using

on-Chip Memory Only,” Icassp 2016, pp. 1011–1015, 2016.

[73] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf, “A

programmable parallel accelerator for learning and classification,” Proc. 19th Int.

Conf. Parallel Archit. Compil. Tech. - PACT ’10, p. 273, 2010.

[74] Xilinx, “ISE Design Suite.” [Online]. Available:

https://www.xilinx.com/products/design-tools/isim.html. [Accessed: 01-Jan-2017].

[75] Y. Zhou and J. Jiang, “An FPGA-based accelerator implementation for deep

convolutional neural networks,” Proc. 2015 4th Int. Conf. Comput. Sci. Netw. Technol.

ICCSNT 2015, no. Iccsnt, pp. 829–832, 2016.

[76] “2016- Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale.” .

[77] Y. Ma, N. Suda, Y. Cao, J. S. Seo, and S. Vrudhula, “Scalable and modularized RTL

compilation of Convolutional Neural Networks onto FPGA,” FPL 2016 - 26th Int.

Conf. Field-Programmable Log. Appl., 2016.

	2018
	VHDL auto-generation tool for optimized hardware acceleration of convolutional neural networks on FPGA (VGT)
	Muhammad K A Hamdan
	Recommended Citation

	tmp.1528995973.pdf.O5ZNX

